

IPv6 for Dummies

Janne Östling janoz@cisco.com

Agenda

- General Concepts
 - Addressing
 - Routing
 - QoS
 - Tunnels
 - NAT
- Infrastructure Deployment

Campus/Data Center

WAN/Branch

Remote Access

- Planning and Deployment Summary
- Appendix & Hidden slides for Reference Only!
 (174 slides total so far...)

Preamble

Reference Materials

Speaker Recommended!!

"Deploying IPv6 Networks" by Ciprian Popoviciu, Eric Levy-Abegnoli, Patrick Grossetete—Cisco Press (ISBN: 1587052105)

- Deploying IPv6 in Campus Networks:
 http://www.cisco.com/univercd/cc/td/doc/solution/campipv6.pdf
- Deploying IPv6 in Branch Networks: http://www.cisco.com/univercd/cc/td/doc/solution/brchipv6.pdf
- CCO IPv6 Main Page: http://www.cisco.com/go/ipv6
- Cisco Network Designs: http://www.cisco.com/go/srnd

Monitoring Market Drivers

Address space depletion

http://www.potaroo.net/tools/ipv4/

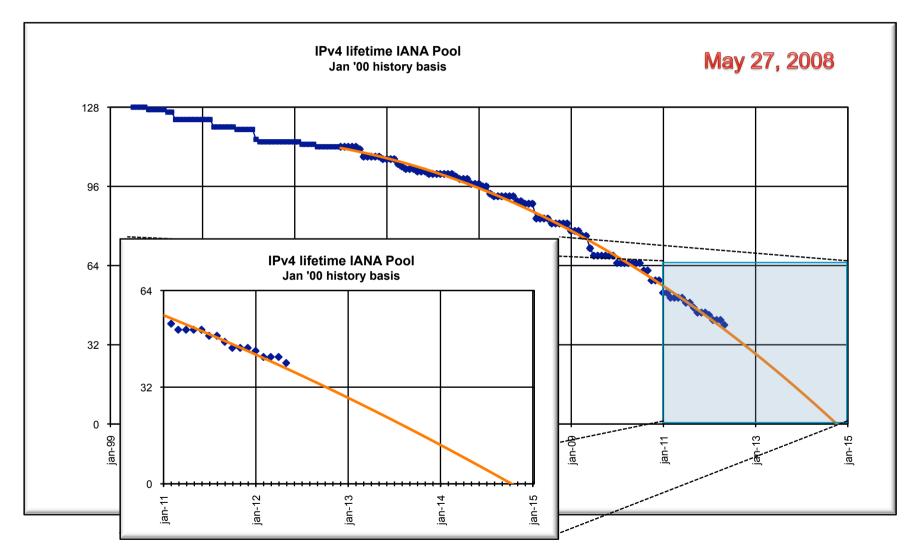
Impact being a slow down of the Internet growth and market penetration

IPv6 "on" & "preferred" by default Applications only running over IPv6 (P2P framework)

MSFT Vista & Server 2008

National IT Strategy

U.S. Federal Mandate


IPv6 Task Force and promotion councils: Africa, India, Japan, Korea,...

China Next Generation Internet (CNGI) project

European Commission sponsored projects

IP NGN
DOCSIS 3.0, FTTH, HDTV, Quad
Play
Mobile SP – 3G, WiMax, PWLAN
Networks in Motion
Networked Sensors, ie: AIRS
NAT Overlap – M&A

Infrastructure Evolution

Update to: http://www.cisco.com/web/about/ac123/ac147/archived_issues/ipj_8-3/ipj_8-3.pdf

Operating System Support

Windows Vista

Windows

- Every major OS supports IPv6 today
- Top-to-bottom TCP/IP stack re-design
- IPv6 is on by default and preferred over IPv4 (considering network/DNS/application support)
- Tunnels will be used before IPv4 if required by IPv6-enabled application ISATAP, Teredo, 6to4, Configured
- All applications and services that ship with Vista/Server 2008 support IPv4 and IPv6 (IPv6-only is supported)

Active Directory, IIS, File/Print/Fax, WINS/DNS/DHCP/LDAP, Windows Media Services, Terminal Services, Network Access Services – Remote Access (VPN/Dial-up), Network Access Protection (NAP), Windows Deployment Service, Certificate Services, SharePoint services, Network Load-Balancing, Internet Authentication Server, Server Clustering, etc...

http://www.microsoft.com/technet/network/ipv6/default.mspx

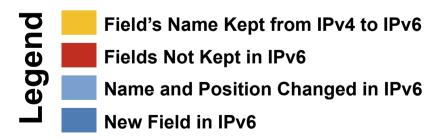
General Concepts

IPv6 Addressing

= 5,23 * 10 ²⁸ = 52 thousand trillion trillion per person

World's population is approximately 6.5 billion

2¹²⁸


6.5

Billion

IPv4 and **IPv6** Header Comparison

IPv4 Header

Version IHL Type of Service Total Length Identification Flags Fragment Offset Time to Live Protocol Header Checksum Source Address Destination Address Options Padding

IPv6 Header

IPv6 Header New Field—Flow Label (RFC3697)

20-Bit Flow Label Field to Identify Specific Flows
Needing Special QoS

IPv6 Header

- Flow classifiers had been based on 5-tuple: Source/destination address, protocol type and port numbers of transport
- Some of these fields may be unavailable due to fragmentation, encryption or locating them past extension headers
- With flow label, each source chooses its own flow label values; routers use source addr + flow label to identify distinct flows
- Flow label value of 0 used when no special QoS requested (the common case today)

Types of IPv6 Addresses

Unicast

Address of a single interface. One-to-one delivery to single interface

Multicast

Address of a set of interfaces. One-to-many delivery to all interfaces in the set

Anycast

Address of a set of interfaces. One-to-one-of-many delivery to a single interface in the set that is closest

No more broadcast addresses

Addressing Format

Representation

- 16-bit hexadecimal numbers
- Numbers are separated by (:)
- Hex numbers are not case sensitive
- Abbreviations are possible

Leading zeros in contiguous block could be represented by (::)

Example:

2001:0db8:0000:130F:0000:0000:087C:140B

2001:0db8:0:130F::87C:140B

Double colon only appears once in the address

Addressing

Prefix Representation

- Representation of prefix is just like CIDR
- In this representation you attach the prefix length
- Like v4 address:

198.10.0.0/16

V6 address is represented the same way:

2001:db8:12::/48

 Only leading zeros are omitted. Trailing zeros are not omitted

2001:0db8:0012::/48 = 2001:db8:12::/48

2001:db8:**1200**::/48 ≠ 2001:db8:12::/48

IPv6 Address Representation

Loopback address representation

0:0:0:0:0:0:0:1=> ::1

Same as 127.0.0.1 in IPv4

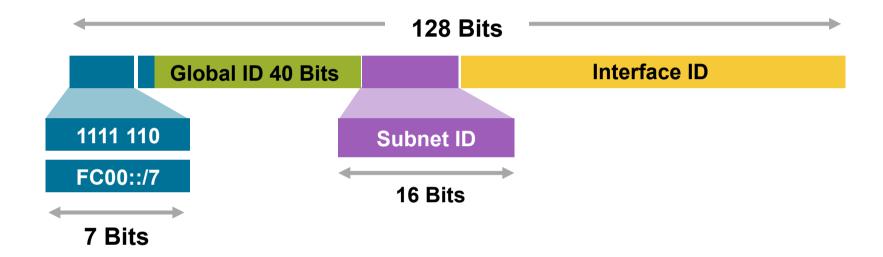
Identifies self

Unspecified address representation

0:0:0:0:0:0:0:0=> ::

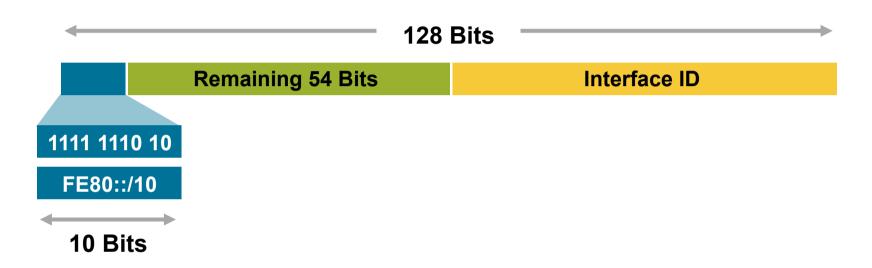
Used as a placeholder when no address available

(Initial DHCP request, Duplicate Address Detection DAD)


Aggregatable Global Unicast Addresses

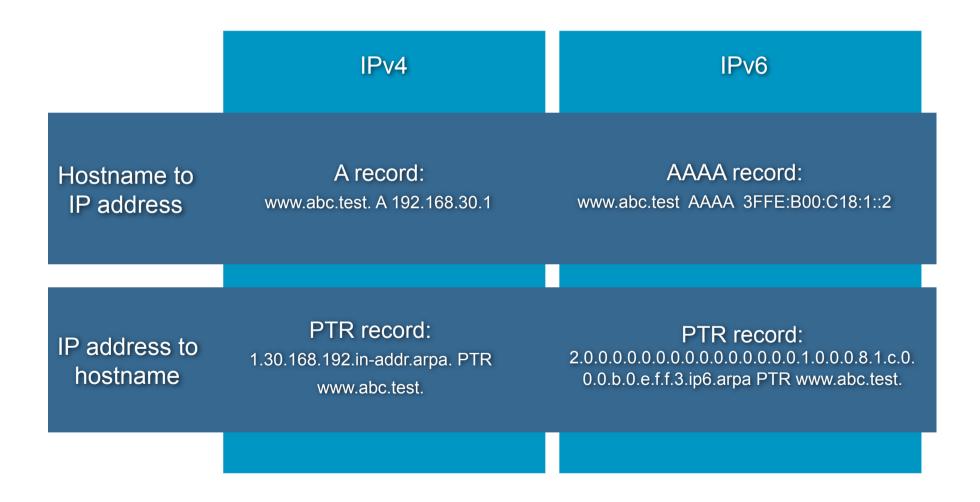
Aggregatable Global Unicast Addresses Are:

- Addresses for generic use of IPv6
- Structured as a hierarchy to keep the aggregation


Unique-Local

Unique-Local Addresses Used for:

- Local communications
- Inter-site VPNs
- Not routable on the Internet


Link-Local

Link-Local Addresses Used for:

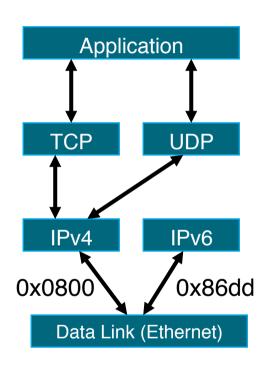
- Mandatory Address for Communication between two IPv6 device (like ARP but at Layer 3)
- Automatically assigned by Router as soon as IPv6 is enabled
- Also used for Next-Hop calculation in Routing Protocols
- Only Link Specific scope
- Remaining 54 bits could be Zero or any manual configured value

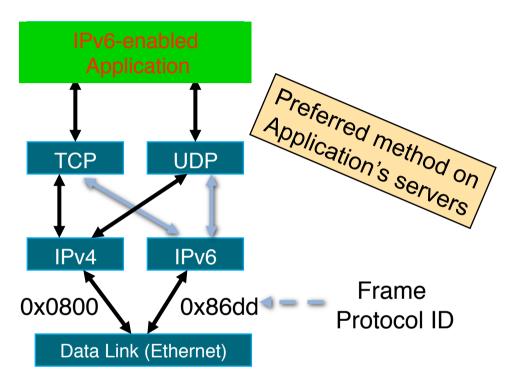
IPv6 and **DNS**

The IPv4—IPv6 Parallel Slalom

RIP	RIPv2 for IPv4 RIPng for IPv6 Distinct but similar protocols with RIPng taking advantage of IPv6 specificities
OSPF	OSPFv2 for IPv4 OSPFv3 for IPv6 Distinct but similar protocols with OSPFv3 being a cleaner implementation that takes advantage of IPv6 specificities
IS-IS	Extended to support IPv6 Natural fit to some of the IPv6 foundational concepts Support Single and Multi Topology operation
EIGRP	Extended to support IPv6 Some changes reflecting IPv6 characteristics

- For all intents and purposes, same IPv4 IGP network design concepts apply to the IPv6 IGP network design
- IPv6 IGPs have additional features that could lead to new designs


IPv4-IPv6 Transition / Co-Existence


A wide range of techniques have been identified and implemented, basically falling into three categories:

- 1. Dual-stack techniques, to allow IPv4 and IPv6 to co-exist in the same devices and networks
- 2. Tunneling techniques, to avoid order dependencies when upgrading hosts, routers, or regions
- 3. Translation techniques, to allow IPv6-only devices to communicate with IPv4-only devices

Expect all of these to be used, in combination...

Dual Stack Approach

- Dual stack node means:
 - -Both IPv4 and IPv6 stacks enabled
 - -Applications can talk to both
 - -Choice of the IP version is based on name lookup and application preference

Using Tunnels for IPv6 Deployment

- Many techniques are available to establish a tunnel:
 - -Manually configured
 - Manual Tunnel (RFC 2893)
 - •GRE (RFC 2473)
 - -Automatic
 - •Compatible IPv4 (RFC 2893): Deprecated
 - •6to4 (RFC 3056)
 - •6over4: Deprecated
 - •ISATAP (RFC 4214)
 - •Teredo (RFC 4380)

Intrasite Automatic Tunnel Address Protocol

- RFC 4214
- To deploy a router is identified that carries ISATAP services
- ISATAP routers need to have at least one IPv4 interface and 0 or more IPv6 interface
- DNS entries are created for each of the ISATAP routers
 IPv4 addresses
- Hosts will automatically discover ISATAP routers and can get access to global IPv6 network
- Host can apply the ISATAP service before all this operation but its interface will only have a link local v6 address until the first router appears

What Is Teredo?

- RFC4380
- Tunnel IPv6 through NATs (NAT types defined in RFC3489)

Full Cone NATs (aka one-to-one)—Supported by Teredo

Restricted NATs—Supported by Teredo

Symmetric NATs—Supported by Teredo with Vista/Server 2008 if only one Teredo client is behind a Symmetric NATs

- Uses UDP port 3544
- Is complex—many sequences for communication and has several attack vectors
- Available on:

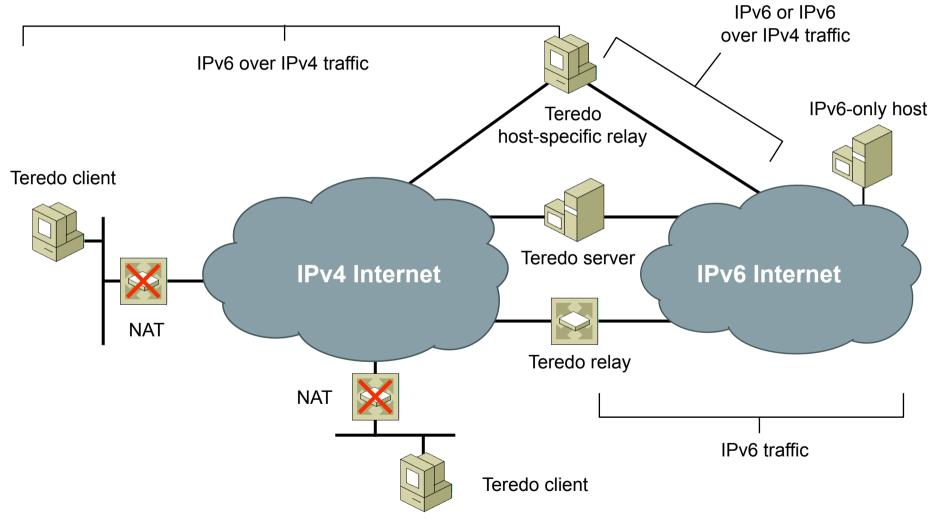
Microsoft Windows XP SP1 w/Advanced Networking Pack

Microsoft Windows Server 2003 SP1

Microsoft Windows Vista (enabled by default—inactive until application requires it)

Microsoft Server 2008

http://www.microsoft.com/technet/prodtechnol/winxppro/maintain/teredo.mspx


Linux, BSD and Mac OS X—"Miredo"

http://www.simphalempin.com/dev/miredo/

Teredo Components

- Teredo Client—Dual-stack node that supports Teredo tunneling to other Teredo clients or IPv6 nodes (via a relay)
- Teredo Server—Dual-stack node connected to IPv4 Internet and IPv6 Internet. Assists in addressing of Teredo clients and initial communication between clients and/or IPv6-only hosts—Listens on UDP port 3544
- Teredo Relay—Dual-stack router that forwards packets between Teredo clients and IPv6-only hosts
- Teredo Host-Specific Relay—Dual-stack node that is connected to IPv4 Internet and IPv6 Internet and can communicate with Teredo Clients without the need for a Teredo Relay

Teredo Overview

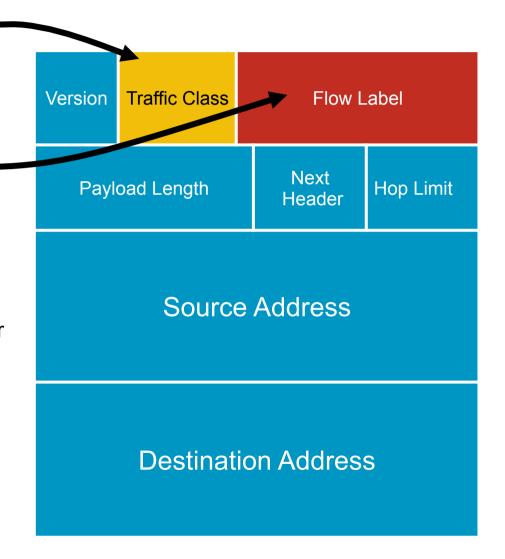
*From Microsoft "Teredo Overview" paper

IPv6 QoS: Header Fields

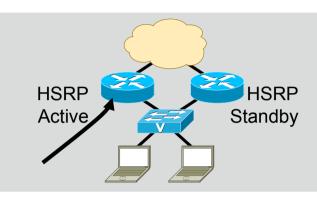
IPv6 traffic class

Exactly the same as TOS field in IPv4

IPv6 Flow Label (RFC 3697)

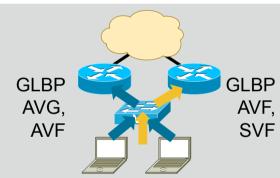

A new 20-bit field in the IPv6 basic header which:

Labels packets belonging to particular flows

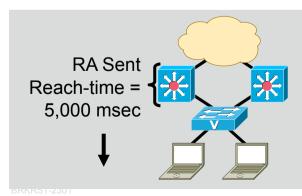

Can be used for special sender requests

Per RFC, Flow Label must not be modified by intermediate routers

 Keep an eye out for work being doing to leverage the flow label



First-Hop Router Redundancy


HSRP for v6

- Modification to Neighbor Advertisement, Router Advertisement, and ICMPv6 redirects
- Virtual MAC derived from HSRP group number and virtual IPv6 link-local address

GLBP for v6

- Modification to Neighbor Advertisement, Router Advertisement—GW is announced via RAs
- Virtual MAC derived from GLBP group number and virtual IPv6 link-local address

Neighbor Unreachability **D**etection

- For rudimentary HA at the first HOP
- Hosts use NUD "reachable time" to cycle to next known default gateway (30s by default)

First-Hop Redundancy

- When HSRP,GLBP and VRRP for IPv6 are not available
- NUD can be used for rudimentary HA at the first-hop (today this only applies to the Campus/DC...HSRP is available on routers)

```
(config-if) #ipv6 nd reachable-time 5000
```

- Hosts use NUD "reachable time" to cycle to next known default gateway (30 seconds by default)
- Can be combined with default router preference to determine primary gw:

```
(config-if)#ipv6 nd router-preference {high | medium | low}
```

```
Default Gateway . . . . : 10.121.10.1

fe80::211:bcff:fec0:d000%4

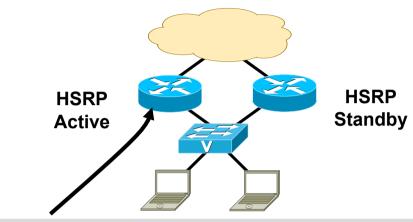
fe80::211:bcff:fec0:c800%4

Reachable Time : 6s

Base Reachable Time : 5s

HSRP for IPv4

RA's with adjusted reachable-time for IPv6
```

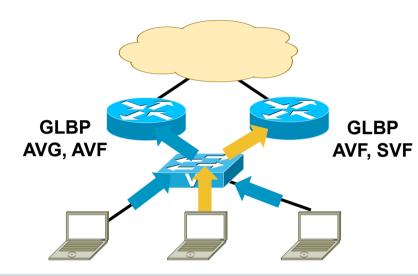

HSRP for IPv6

- Many similarities with HSRP for IPv4
- Changes occur in Neighbor Advertisement, Router Advertisement, and ICMPv6 redirects
- No need to configure GW on hosts (RAs are sent from HSRP Active router)
- Virtual MAC derived from HSRP group number and virtual IPv6
 Link-local address
- IPv6 Virtual MAC range:

0005.73A0.0000—0005.73A0.0FFF (4096 addresses)

- HSRP IPv6 UDP Port Number 2029 (IANA Assigned)
- No HSRP IPv6 secondary address
- No HSRP IPv6 specific debug

Host with GW of Virtual IP

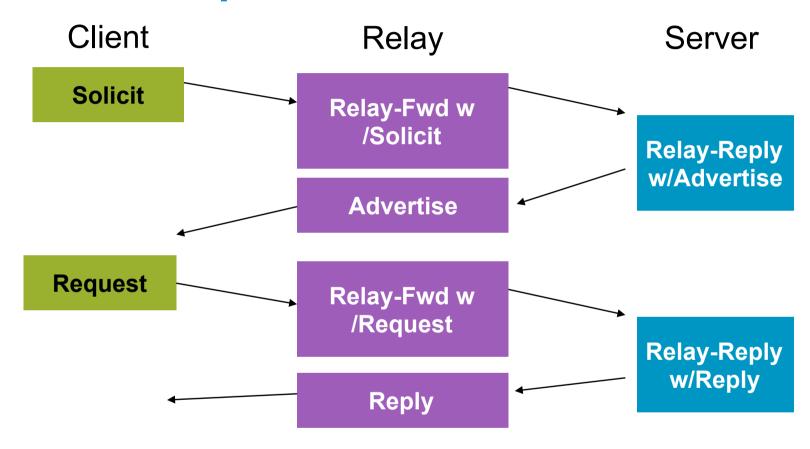



```
interface FastEthernet0/1
  ipv6 address 2001:DB8:66:67::2/64
  ipv6 cef
  standby version 2
  standby 1 ipv6 autoconfig
  standby 1 timers msec 250 msec 800
  standby 1 preempt
  standby 1 preempt
  standby 1 authentication md5 key-string cisco
  standby 1 track FastEthernet0/0
```

GLBP for IPv6

- Many similarities with GLBP for IPv4 (CLI, Load-balancing)
- Modification to Neighbor Advertisement, Router Advertisement
- GW is announced via RAs
- Virtual MAC derived from GLBP group number and virtual IPv6 Link-local address

AVG=Active Virtual Gateway AVF=Active Virtual Forwarder SVF=Standby Virtual Forwarder




```
interface FastEthernet0/0
ipv6 address 2001:DB8:1::1/64
ipv6 cef
glbp 1 ipv6 autoconfig
glbp 1 timers msec 250 msec 750
glbp 1 preempt delay minimum 180
glbp 1 authentication md5 key-string cisco
```

DHCPv6

- Updated version of DHCP for IPv4
- Client detects the presence of routers on the link
- If found, then examines router advertisements to determine if DHCP can or should be used
- If no router found or if DHCP can be used, then
 - DHCP Solicit message is sent to the All-DHCP-Agents multicast address
 - Using the link-local address as the source address

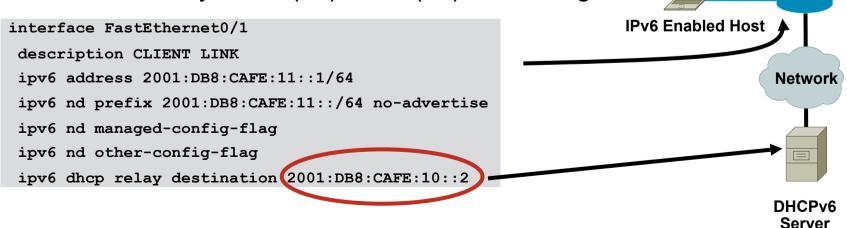
DHCPv6 Operation

- All_DHCP_Relay_Agents_and_Servers (FF02::1:2)
- All_DHCP_Servers (FF05::1:3)
- DHCP Messages: Clients listen UDP port 546; servers and relay agents listen on UDP port 547

Stateful/Stateless DHCPv6

Stateful and Stateless DHCPv6 Server

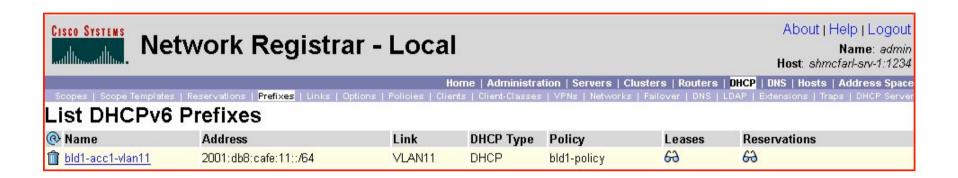
Cisco Network Registrar:

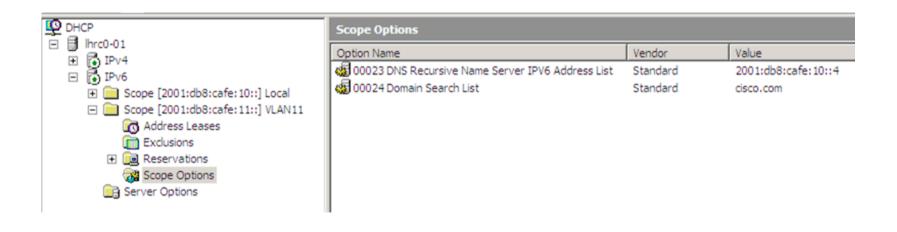

http://www.cisco.com/en/US/products/sw/netmgtsw/ps1982/

Microsoft Windows Server 2008:


http://technet2.microsoft.com/windowsserver2008/en/library/bab0f1a1-54aa-4cef-9164-139e8bcc44751033.mspx?mfr=true

Dibbler: http://klub.com.pl/dhcpv6/


DHCPv6 Relay—12.3(11)T/12.2(28)SB and higher

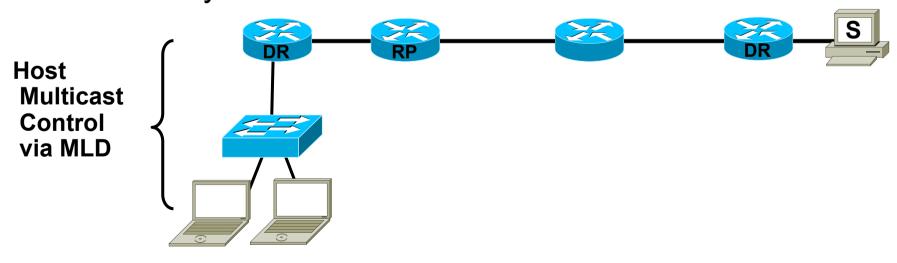


Basic DHCPv6 Message Exchange

CNR/W2K8—DHCPv6

IPv6 General Prefix

- Provides an easy/fast way to deploy prefix changes
- Example:2001:db8:cafe::/48 = General Prefix
- Fill in interface specific fields after prefix


```
"ESE ::11:0:0:0:1" = 2001:db8:cafe:11::1/64
```

```
ipv6 unicast-routing
ipv6 cef
ipv6 general-prefix ESE 2001:DB8:CAFE::/48
ipv6 general-prefix ESE 2001:DB8:CAFE::/48
ipv6 cef
!
interface GigabitEthernet3/2
ipv6 address ESE ::2/126
ipv6 cef
!
interface GigabitEthernet1/2
ipv6 address ESE ::E/126
ipv6 cef
interface GigabitEthernet1/2
ipv6 address ESE ::E/126
ipv6 cef
```

```
Global unicast address(es):
2001:DB8:CAFE:11::1, subnet is 2001:DB8:CAFE:11::/64
```

IPv6 Multicast Availability

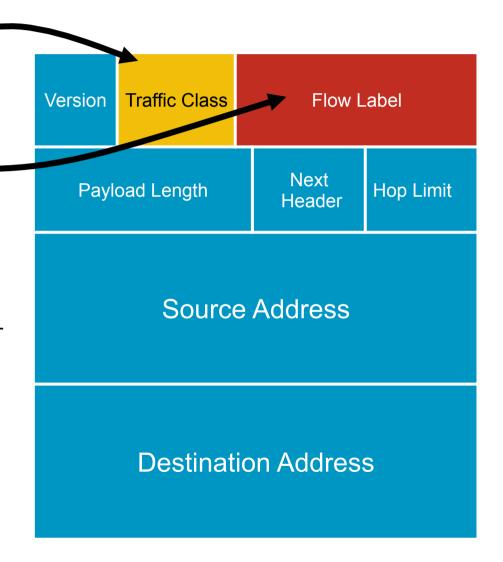
- Multicast Listener Discovery (MLD)
 - Equivalent to IGMP
- PIM Group Modes: Sparse Mode, Bidirectional and Source Specific Multicast
- RP Deployment: Static, Embedded
 - NO Anycast-RP Yet

IPv6 QoS: Header Fields

IPv6 traffic class

Exactly the same as TOS field in IPv4

IPv6 Flow Label (RFC 3697)

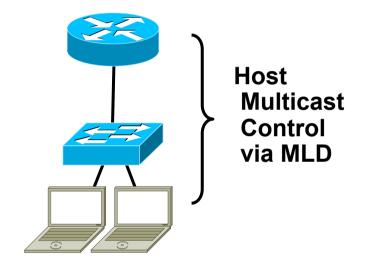

A new 20-bit field in the IPv6 basic header which:

Labels packets belonging to particular flows

Can be used for special sender requests

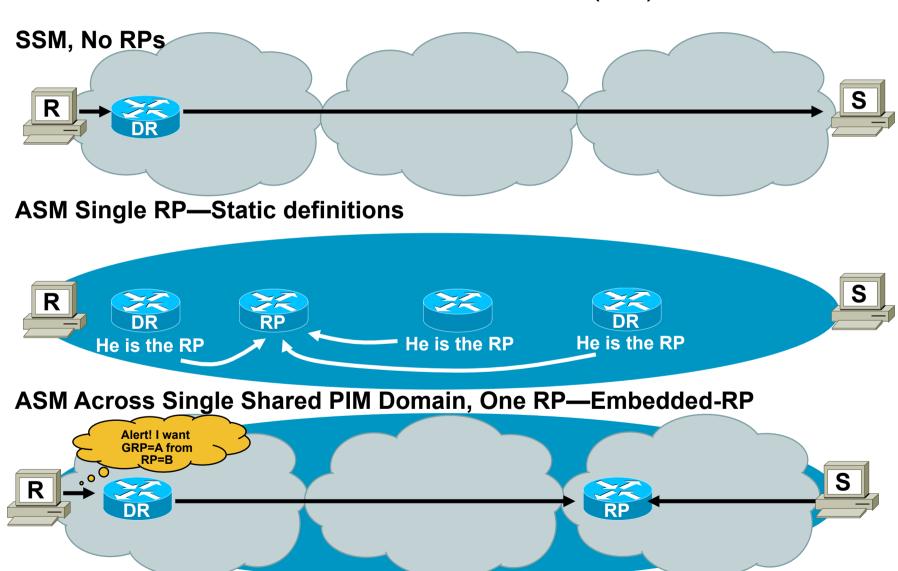
Per RFC, Flow Label must not be modified by intermediate routers

 Keep an eye out for work being doing to leverage the flow label


Multicast Listener Discovery: MLD

Multicast Host Membership Control

- MLD is equivalent to IGMP in IPv4
- MLD messages are transported over ICMPv6
- MLD uses link local source addresses
- MLD packets use "Router Alert" in extension header (RFC2711)
- Version number confusion:


MLDv1 (RFC2710) like IGMPv2 (RFC2236) MLDv2 (RFC3810) like IGMPv3 (RFC3376)

MLD snooping

Multicast Deployment Options

With and Without Rendezvous Points (RP)

IPv6 QoS Syntax Changes

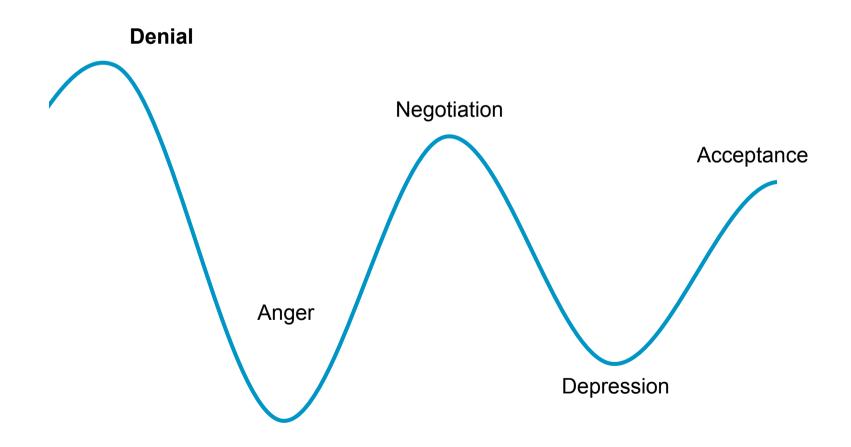
- IPv4 syntax has used "ip" following match/set statements
 Example: match ip dscp, set ip dscp
- Modification in QoS syntax to support IPv6 and IPv4

```
New match criteria
  match dscp - Match DSCP in v4/v6
  match precedence - Match Precedence in v4/v6
New set criteria
  set dscp - Set DSCP in v4/v6
  set precedence - Set Precedence in v4/v6
```

 Additional support for IPv6 does not always require new Command Line Interface (CLI)

Example—WRED

Scalability and Performance

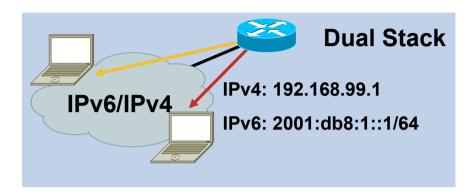

IPv6 Neighbor Cache = ARP for IPv4

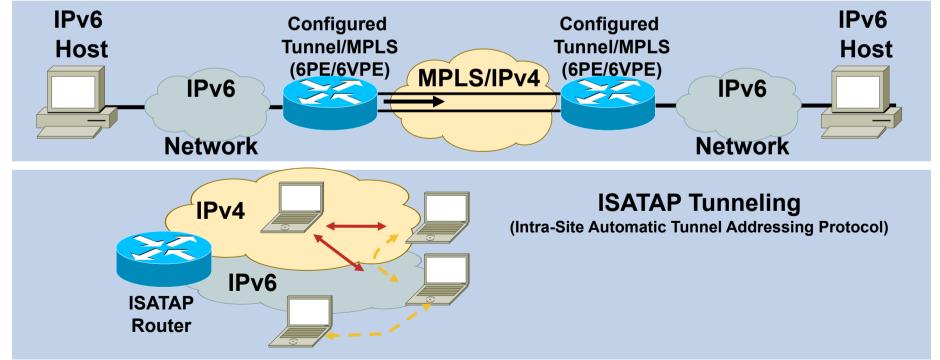
In dual-stack networks the first hop routers/switches will now have more memory consumption due to IPv6 neighbor entries (can be multiple per host) + ARP entries

ARP entry for host in the campus distribution layer:

- Full Internet route tables—ensure to account for TCAM/Memory requirements for both IPv4/IPv6—Not all vendors can properly support both
- Multiple routing protocols—IPv4 and IPv6 will have separate routing protocols.
 Ensure enough CPU/Memory is present
- Control Plane impact when using tunnels—Terminate ISATAP/configured tunnels in HW platforms when attempting large scale deployments (hundreds/thousands of tunnels)

IPv4 to IPv6 transition and the stages of grief




Infrastructure Deployment

Start Here: Cisco IOS Software Release Specifics for IPv6 Features http://www.cisco.com/en/US/docs/ios/ipv6/configuration/quide/ip6-roadmap.html

Pv6 Coexistence

Campus/Data Center

Deploying IPv6 in Campus Networks:

http://www.cisco.com/univercd/cc/td/doc/solution/campipv6.pdf

ESE Campus Design and Implementation Guides:

http://www.cisco.com/en/US/netsol/ns656/networking_solutions_design_guidances_list.html#anchor2

Campus IPv6 Deployment

Three Major Options

 Dual-stack—The way to go for obvious reasons: performance, security, QoS, Multicast and management

Layer 3 switches should support IPv6 forwarding in hardware

 Hybrid—Dual-stack where possible, tunnels for the rest, but all leveraging the existing design/gear

Pro—Leverage existing gear and network design (traditional L2/L3 and Routed Access)

Con—Tunnels (especially ISATAP) cause unnatural things to be done to infrastructure (like Core acting as Access layer) and ISATAP does not support IPv6 multicast

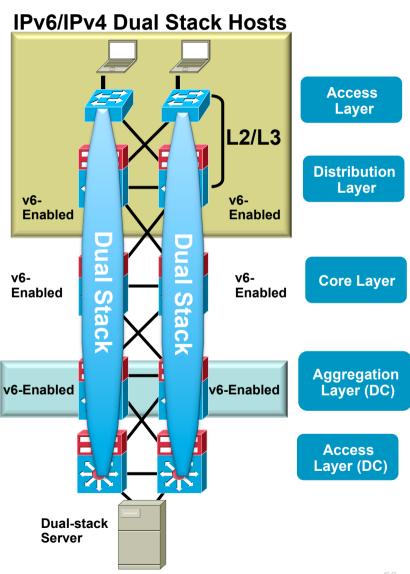
 IPv6 Service Block—A new network block used for interim connectivity for IPv6 overlay network

Pro—Separation, control and flexibility (still supports traditional L2/L3 and Routed Access)

Con—Cost (more gear), does not fully leverage existing design, still have to plan for a real dual-stack deployment and ISATAP does not support IPv6 multicast

Campus IPv6 Deployment Options

Dual-stack IPv4/IPv6


- #1 requirement switching/routing platforms must support hardware based forwarding for IPv6
- IPv6 is transparent on L2 switches but...

L2 multicast - MLD snooping

IPv6 management —Telnet/SSH /HTTP/SNMP

Intelligent IP services on WLAN

- Expect to run the same IGPs as with IPv4
- Keep feature expectations simple

Access Layer: Dual Stack (Layer 2 Access)

 Catalyst 3560/3750—In order to enable IPv6 functionality, the proper SDM template needs to be defined

http://www.cisco.com/univercd/cc/td/doc/product/lan/cat3750/12225see/scg/swsdm.htm#)

Switch (config) #sdm prefer dual-ipv4-and-ipv6 default

 If using a traditional Layer-2 access design, the only thing that needs to be enabled on the access switch (management/security discussed later) is MLD snooping:

Switch (config) #ipv6 mld snooping

Distribution Layer: Dual Stack (Layer 2 Access)

```
ipv6 unicast-routing
                                                 interface Vlan2
ipv6 multicast-routing
ipv6 cef distributed
interface GigabitEthernet1/1
description To 6k-core-right
ipv6 address 2001:DB8:CAFE:1105::A001:1010/64
no ipv6 redirects
ipv6 nd suppress-ra
ipv6 ospf network point-to-point
ipv6 ospf 1 area 0
ipv6 ospf hello-interval 1
ipv6 ospf dead-interval 3
                                                  timers spf 1 5
interface GigabitEthernet1/2
description To 6k-core-left
ipv6 address 2001:DB8:CAFE:1106::A001:1010/64
no ipv6 redirects
ipv6 nd suppress-ra
ipv6 ospf network point-to-point
ipv6 ospf 1 area 0
 ipv6 ospf hello-interval 1
 ipv6 ospf dead-interval 3
```

```
description Data VLAN for Access
ipv6 address 2001:DB8:CAFE:2::A001:1010/64
ipv6 nd reachable-time 5000
ipv6 nd router-preference high
no ipv6 redirects
ipv6 ospf 1 area 1
ipv6 router ospf 1
auto-cost reference-bandwidth 10000
router-id 10.122.0.25
log-adjacency-changes
area 2 range 2001:DB8:CAFE:xxxx::/xx
 May optionally configure default router
 preference—ipv6 nd router-preference
  {high | medium | low}-12.2(33)SXG
```

Access Layer: Dual Stack (Routed Access)

```
ipv6 unicast-routing
                                                   interface Vlan2
ipv6 cef
                                                   description Data VLAN for Access
                                                   ipv6 address 2001:DB8:CAFE:2::CAC1:3750/64
                                                   ipv6 ospf 1 area 2
interface GigabitEthernet1/0/25
description To 6k-dist-1
                                                    ipv6 cef
ipv6 address 2001:DB8:CAFE:1100::CAC1:3750/64
                                                  ipv6 router ospf 1
no ipv6 redirects
ipv6 nd suppress-ra
                                                   router-id 10.120.2.1
ipv6 ospf network point-to-point
                                                   log-adjacency-changes
ipv6 ospf 1 area 2
                                                    auto-cost reference-bandwidth 10000
ipv6 ospf hello-interval 1
                                                   area 2 stub no-summary
ipv6 ospf dead-interval 3
                                                   passive-interface Vlan2
ipv6 cef
                                                   timers spf 1 5
interface GigabitEthernet1/0/26
description To 6k-dist-2
ipv6 address 2001:DB8:CAFE:1101::CAC1:3750/64
no ipv6 redirects
ipv6 nd suppress-ra
ipv6 ospf network point-to-point
ipv6 ospf 1 area 2
ipv6 ospf hello-interval 1
ipv6 ospf dead-interval 3
ipv6 cef
```

Distribution Layer: Dual Stack (Routed Access)

```
ipv6 unicast-routing
ipv6 multicast-routing
ipv6 cef distributed
interface GigabitEthernet3/1
description To 3750-acc-1
ipv6 address 2001:DB8:CAFE:1100::A001:1010/64
 no ipv6 redirects
ipv6 nd suppress-ra
ipv6 ospf network point-to-point
ipv6 ospf 1 area 2
ipv6 ospf hello-interval 1
ipv6 ospf dead-interval 3
 ipv6 cef
interface GigabitEthernet1/2
description To 3750-acc-2
ipv6 address 2001:DB8:CAFE:1103::A001:1010/64
no ipv6 redirects
ipv6 nd suppress-ra
ipv6 ospf network point-to-point
ipv6 ospf 1 area 2
ipv6 ospf hello-interval 1
ipv6 ospf dead-interval 3
 ipv6 cef
```

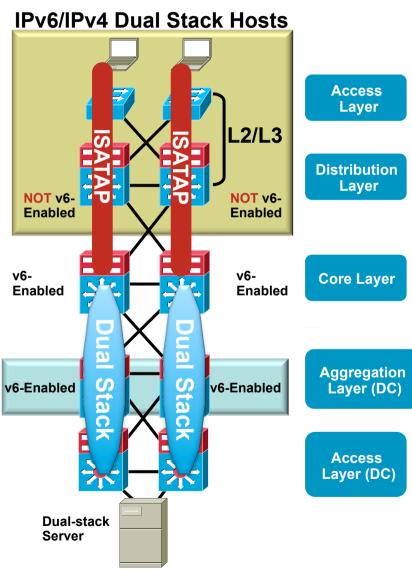
```
ipv6 router ospf 1
  auto-cost reference-bandwidth 10000
  router-id 10.122.0.25
  log-adjacency-changes
  area 2 stub no-summary
  passive-interface Vlan2
  area 2 range 2001:DB8:CAFE:xxxx::/xx
  timers spf 1 5
```

Campus IPv6 Deployment Options

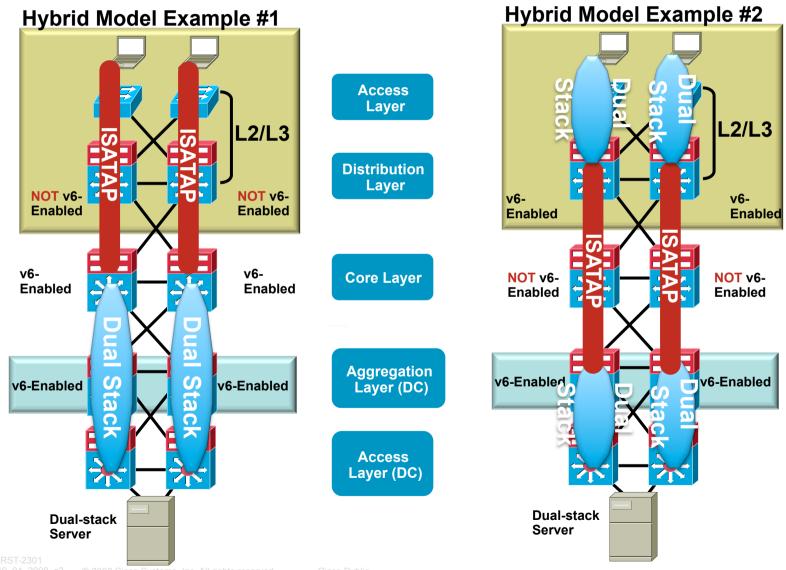
Hybrid Model

Offers IPv6 connectivity via multiple options

Dual-stack


Configured tunnels – L3-to-L3

ISATAP - Host-to-L3


- Leverages existing network
- Offers natural progression to full dual -stack design
- May require tunneling to less-than -optimal layers (i.e. Core layer)
- ISATAP creates a flat network (all hosts on same tunnel are peers)

Create tunnels per VLAN/subnet to keep same segregation as existing design (not clean today)

 Provides basic HA of ISATAP tunnels via old Anycast-RP idea

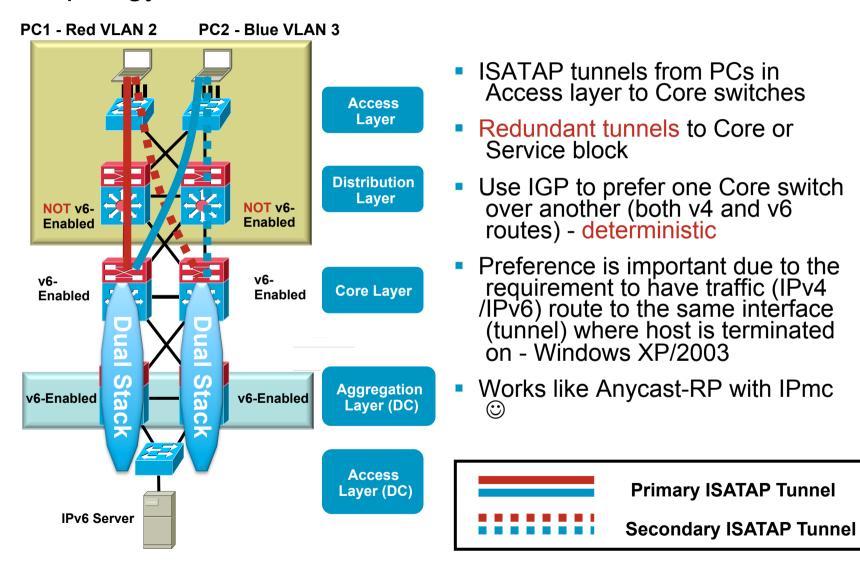
Hybrid Model Examples

IPv6 ISATAP Implementation

ISATAP Host Considerations

- ISATAP is available on Windows XP, Windows 2003, Vista/Server 2008, port for Linux
- If Windows host does not detect IPv6 capabilities on the physical interface then an effort to use ISATAP is started
- Can learn of ISATAP routers via DNS "A" record lookup "isatap" or via static configuration

If DNS is used then Host/Subnet mapping to certain tunnels cannot be accomplished due to the lack of naming flexibility in ISATAP


Two or more ISATAP routers can be added to DNS and ISATAP will determine which one to use and also fail to the other one upon failure of first entry

If DNS zoning is used within the Enterprise then ISATAP entries for different routers can be used in each zone

- In the presented design the static configuration option is used to ensure each host is associated with the correct ISATAP tunnel
- Can conditionally set the ISATAP router per host based on subnet, userid, department and possibly other parameters such as role

Highly Available ISATAP Design

Topology

IPv6 Campus ISATAP Configuration

Redundant Tunnels

ISATAP Primary

```
interface Tunnel2
 ipv6 address 2001:DB8:CAFE:2::/64 eui-64
no ipv6 nd suppress-ra
 ipv6 ospf 1 area 2
tunnel source Loopback2
tunnel mode ipv6ip isatap
interface Tunnel3
ipv6 address 2001:DB8:CAFE:3::/64 eui-64
no ipv6 nd suppress-ra
ipv6 ospf 1 area 2
tunnel source Loopback3
tunnel mode ipv6ip isatap
interface Loopback2
 description Tunnel source for ISATAP-VLAN2
ip address 10.122.10.102 255.255.255.255
interface Loopback3
 description Tunnel source for ISATAP-VLAN3
 ip address 10.122.10.103 255.255.255.255
```

ISATAP Secondary

```
interface Tunnel2
ipv6 address 2001:DB8:CAFE:2::/64 eui-64
no ipv6 nd suppress-ra
ipv6 ospf 1 area 2
ipv6 ospf cost 10
tunnel source Loopback2
tunnel mode ipv6ip isatap
interface Tunnel3
ipv6 address 2001:DB8:CAFE:3::/64 eui-64
no ipv6 nd suppress-ra
ipv6 ospf 1 area 2
ipv6 ospf cost 10
tunnel source Loopback3
tunnel mode ipv6ip isatap
interface Loopback2
ip address 10.122.10.102 255.255.255.255
delay 1000
interface Loopback3
ip address 10.122.10.103 255.255.255.255
delay 1000
```

IPv6 Campus ISATAP Configuration

IPv4 and IPv6 Routing—Options

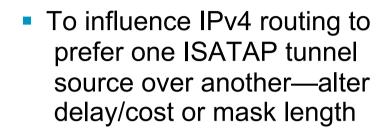
ISATAP Secondary—Bandwidth adjustment

```
interface Loopback2
ip address 10.122.10.102 255.255.255
delay 1000
```

ISATAP Primary—Longest-match adjustment

```
interface Loopback2
ip address 10.122.10.102 255.255.255
```

ISATAP Secondary—Longest-match adjustment

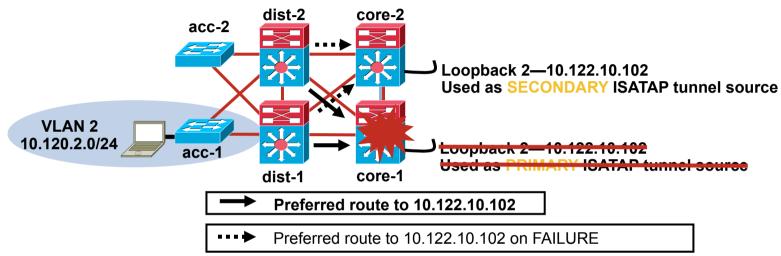

```
interface Loopback2
ip address 10.122.10.102 255.255.255.254
```

IPv4—EIGRP

```
router eigrp 10
eigrp router-id 10.122.10.3
```

IPv6—OSPFv3

ipv6 router ospf 1
router-id 10.122.10.3



- Lower timers (timers spf, hello/hold, dead) to reduce convergence times
- Use recommended summarization and/or use of stubs to reduce routes and convergence times

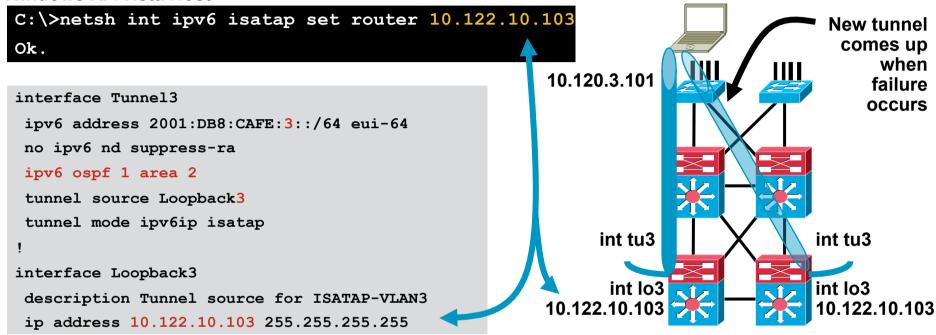
Set RID to ensure redundant loopback addresses do not cause duplicate RID issues

Distribution Layer Routes

Primary/Secondary Paths to ISATAP Tunnel Sources

Before Failure

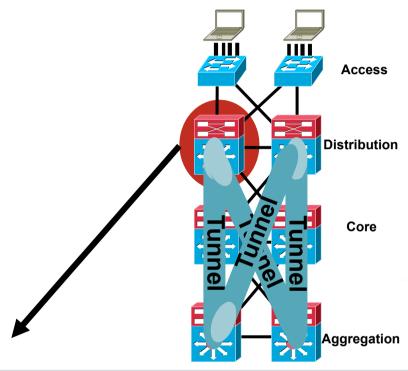
```
dist-1#show ip route | b 10.122.10.102/32
D 10.122.10.102/32 [90/130816] via 10.122.0.41, 00:09:23, GigabitEthernet1/0/27
```


After Failure

```
dist-1#show ip route | b 10.122.10.102/32
D 10.122.10.102/32 [90/258816] via 10.122.0.49, 00:00:08, GigabitEthernet1/0/28
```

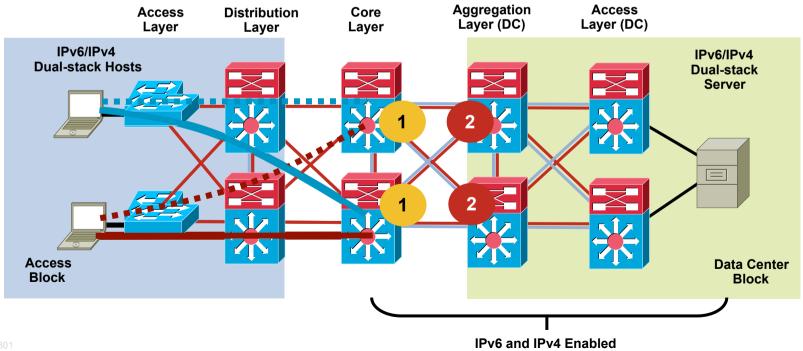
IPv6 Campus ISATAP Configuration

ISATAP Client Configuration


Windows XP/Vista Host

IPv6 Configured Tunnels

Think GRE or IP-in-IP Tunnels


- Encapsulating IPv6 into IPv4
- Used to traverse IPv4 only devices /links/networks
- Treat them just like standard IP links (only insure solid IPv4 routing/HA between tunnel interfaces)
- Provides for same routing, QoS, Multicast as with Dual-stack
- In HW, performance should be similar to standard tunnels


```
interface Tunnel0 interface GigabitEthernet1/1
ipv6 cef ipv6 address 2001:DB8:CAFE:13::4/127
ipv6 address 2001:DB8:CAFE:13::1/127 ipv6 ospf 1 area 0
ipv6 ospf 1 area 0 ipv6 cef
tunnel source Loopback3 !
tunnel destination 172.16.2.1 interface Loopback3
tunnel mode ipv6ip ip address 172.16.1.1 255.255.252
```

Campus Hybrid Model 1 QoS

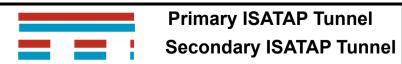
- 1. Classification and marking of IPv6 is done on the egress interfaces on the core layer switches because packets have been tunneled until this point QoS policies for classification and marking cannot be applied to the ISATAP tunnels on ingress
- 2. The classified and marked IPv6 packets can now be examined by upstream switches (e.g. aggregation layer switches) and the appropriate QoS policies can be applied on ingress. These polices may include trust (ingress), policing (ingress) and queuing (egress).

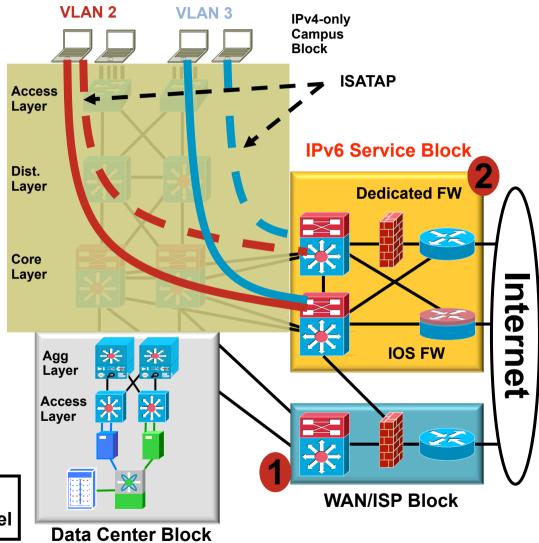
Campus Hybrid Model 1

QoS Configuration Sample—Core Layer

```
mls gos
class-map match-all CAMPUS-BULK-DATA
  match access-group name BULK-APPS
class-map match-all CAMPUS-TRANSACTIONAL-DATA
 match access-group name TRANSACTIONAL-APPS
policy-map IPv6-ISATAP-MARK
  class CAMPUS-BULK-DATA
   set dscp af11
  class CAMPUS-TRANSACTIONAL-DATA
   set dscp af21
  class class-default
   set dscp default
ipv6 access-list BULK-APPS
permit tcp any any eq ftp
permit tcp any any eq ftp-data
ipv6 access-list TRANSACTIONAL-APPS
permit tcp any any eq telnet
permit tcp any any eq 22
```

```
ipv6 access-list BULK-APPS
permit tcp any any eq ftp
permit tcp any any eq ftp-data
ipv6 access-list TRANSACTIONAL-APPS
 permit tcp any any eq telnet
permit tcp any any eq 22
interface GigabitEthernet2/1
 description to 6k-agg-1
mls gos trust dscp
 service-policy output IPv6-ISATAP-MARK
interface GigabitEthernet2/2
 description to 6k-agg-2
mls gos trust dscp
 service-policy output IPv6-ISATAP-MARK
interface GigabitEthernet2/3
 description to 6k-core-1
mls qos trust dscp
 service-policy output IPv6-ISATAP-MARK
```

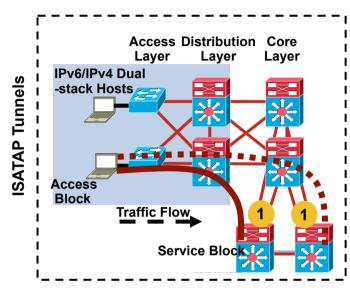

Campus IPv6 Deployment Options

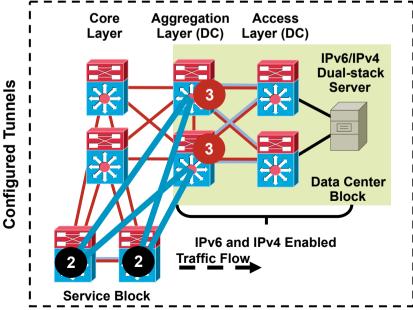

IPv6 Service Block – An Interim Approach

- Provides ability to rapidly deploy IPv6 services without touching existing network
- Provides tight control of where IPv6 is deployed and where the traffic flows (maintain separation of groups/locations)
- Offers the same advantages as Hybrid Model without the alteration to existing code/configurations
- Configurations are very similar to the Hybrid Model

ISATAP tunnels from PCs in Access layer to Service Block switches (instead of core layer – Hybrid)

- 1) Leverage existing ISP block for both IPv4 and IPv6 access
- 2) Use dedicated ISP connection just for IPv6 – Can use IOS FW or PIX/ASA appliance



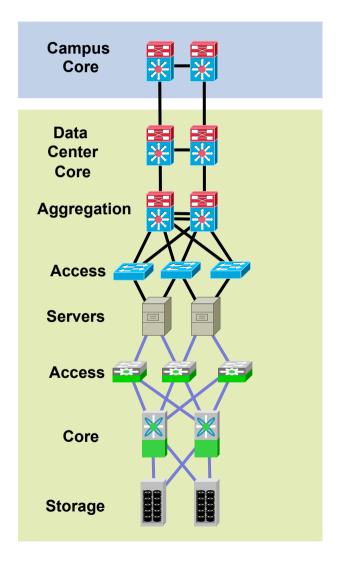


Campus Service Block

QoS From Access Layer

- Same policy design as Hybrid Model—The first place to implement classification and marking from the access layer is after decapsulation (ISATAP) which is on the egress interfaces on the Service Block switches
- IPv6 packets received from ISATAP interfaces will have egress policies (classification/marking) applied on the configured tunnel interfaces
- Aggregation/Access switches can apply egress/ingress policies (trust, policing, queuing) to IPv6 packets headed for DC services

ISATAP Scalability Testing Result


CPU and memory utilization during scale of ISATAP tunnels

# of Tunnels	1 n	Free Memory		
" or rainiois	Before	After	, , , , , , , , , , , , , , , , , , , ,	
100 tunnel	2	2	845246288	
200 tunnel	2	2	839256168	
500 tunnel	2	4	827418904	

Traffic convergence for each tunnel

# of Tunnel	Convergence for upstream (ms)		Convergence for downstream (ms)		Convergence for Recovery (ms)	
	Client to Server	Avg. Client to Server	Server to Client	Avg. Server to Client	upstream	downstream
100 tunnel	208~369	350	353~532	443	0	0
500 tunnel	365~780	603	389~1261	828	0~33	11~43

IPv6 Data Center Integration

- The single most overlooked and, potentially, complicated area for IPv6 deployment
- Front-end design will be similar to Campus based on feature, platform and connectivity similarities
- IPv6 for SAN is supported in SAN-OS 3.0
- Major issue in DC with IPv6 today—NIC Teaming (missing in some NIC/Server vendor implementations)
- Watch status of IPv6 support from App, Grid, DB vendors, DC management

Get granular—e.g. iLO

Impact on clusters—Microsoft Server 2008 failover clusters fully support IPv6 (and L3)

 Your favorite appliance/module may not be ready today

Cisco IPv6 Storage Networking

SAN-OS 3.x

Core (Host Implementation)

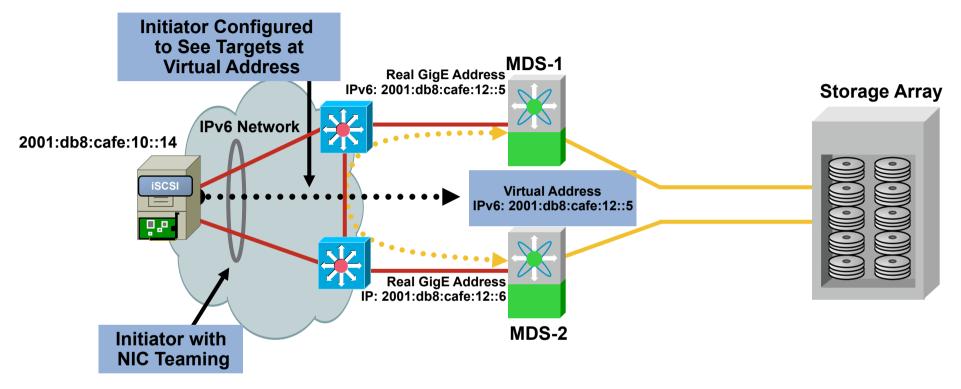
- IPv6 (RFC 2460)
- ICMPv6 (RFC 2463)
- Neighbor Discovery (RFC 2461)
- Stateless Auto-configuration
- VRRP for IPv6 for application redundancy (IETF Draft)

Applications and Mgmt

- Telnet, TFTP, FTP, SCP, DNS Resolver, HTTP, Ping, Traceroute, SSH
- Cisco IP, IP-Forwarding and VRRP MIBs
- SNMP over IPv6

Security

- IPv6 Access Control lists
- IPv6 IPsec (3.2)


SAN Applications

- IP Storage—iSCSI, ISNS, and FCIP
- Zone Server, FC Name Server
- IPv6 over FC
- Other modules—eg. NTP, fc -tunnel etc.

MDS 9500 Family

iSCSI/VRRP for IPv6

- Same configuration requirements and operation as with IPv4
- Can use automatic preemption—configure VR address to be the same as physical interface of "primary"
- Host-side HA uses NIC teaming (see slides for NIC teaming)
- SAN-OS 3.2 will support iSCSI with IPsec

iSCSI IPv6 Example—MDS

Initiator/Target

```
iscsi virtual-target name iscsi-atto-target
 pWWN 21:00:00:10:86:10:46:9c
  initiator ign.1991-05.com.microsoft:w2k8-svr-01.cisco.com permit
iscsi initiator name iqn.1991-05.com.microsoft:w2k8-svr-01.cisco.com
  static pWWN 24:01:00:0d:ec:24:7c:42
 vsan 1
zone default-zone permit vsan 1
zone name iscsi-zone vsan 1
    member symbolic-nodename ign.1991-05.com.microsoft:w2k8-svr-01.cisco.com
    member pwwn 21:00:00:10:86:10:46:9c
   member pwwn 24:01:00:0d:ec:24:7c:42
    member symbolic-nodename iscsi-atto-target
zone name Generic vsan 1
    member pwwn 21:00:00:10:86:10:46:9c
zoneset name iscsi zoneset vsan 1
    member iscsi-zone
zoneset name Generic vsan 1
    member Generic
```

iSCSI/VRRP IPv6 Example—MDS

Interface

MDS-1

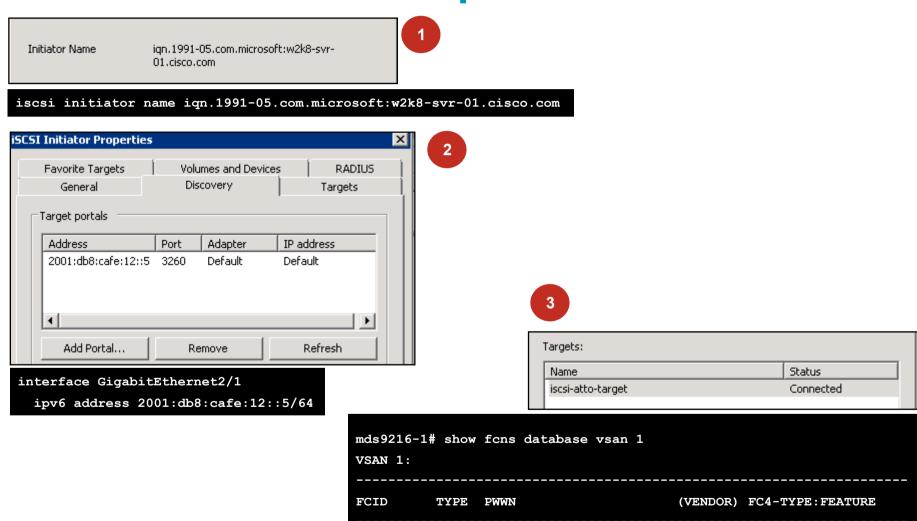
```
interface GigabitEthernet2/1
  ipv6 address 2001:db8:cafe:12::5/64
  no shutdown
  vrrp ipv6 1
   address 2001:db8:cafe:12::5
   no shutdown
```

MDS-2

```
interface GigabitEthernet2/1
  ipv6 address 2001:db8:cafe:12::6/64
  no shutdown
  vrrp ipv6 1
    address 2001:db8:cafe:12::5
    no shutdown
```

```
mds-1# show vrrp ipv6 vr 1

Interface VR IpVersion Pri Time Pre State VR IP addr


GigE2/1 1 IPv6 255 100cs master 2001:db8:cafe:12::5

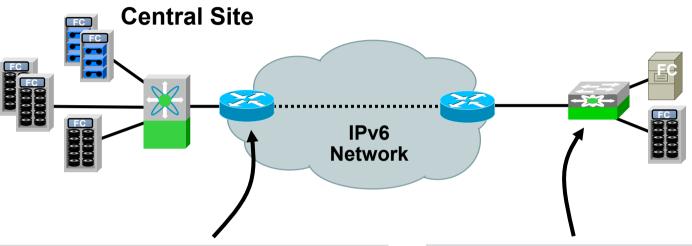
mds-2# show vrrp ipv6 vr 1

Interface VR IpVersion Pri Time Pre State VR IP addr

GigE2/1 1 IPv6 100 100cs backup 2001:db8:cafe:12::5
```

iSCSI Initiator Example—W2K8 IPv6

21:00:00:10:86:10:46:9c


scsi-fcp:target

24:01:00:0d:ec:24:7c:42 (Cisco) scsi-fcp:init isc..w

0x670400 N

0x670405 N

SAN-OS 3.x—FCIP(v6)


```
fcip profile 100
  ip address 2001:db8:cafe:50::1
  tcp max-bandwidth-mbps 800 min-available
-bandwidth-mbps 500 round-trip-time-us 84
!
interface fcip100
  use-profile 100
  peer-info ipaddr 2001:db8:cafe:50::2
!
interface GigabitEthernet2/2
  ipv6 address 2001:db8:cafe:50::1/64
```

```
fcip profile 100
  ip address 2001:db8:cafe:50::2
  tcp max-bandwidth-mbps 800 min-available
-bandwidth-mbps 500 round-trip-time-us 84
!
interface fcip100
  use-profile 100
  peer-info ipaddr 2001:db8:cafe:50::1
!
interface GigabitEthernet2/2
  ipv6 address 2001:db8:cafe:50::2/64
```

Remote Sites

4340_04_2008_c2 © 2008 Cisco Systems, Inc. All rights reserved. Cisco Public

Data Center NIC Teaming Issue

What Happens if IPv6 is Unsupported?

Auto-configuration

Static configuration

Note: Same Issue Applies to Linux

Intel ANS NIC Teaming for IPv6

- Intel IPv6 NIC Q&A—Product support
- http://www.intel.com/support/network/sb/cs-009090.htm
- Intel now supports IPv6 with Express, ALB, and AFT deployments

Intel statement of support for RLB—"Receive Load Balancing (RLB) is not supported on IPv6 network connections. If a team has a mix of IPv4 and IPv6 connections, RLB will work on the IPv4 connections but not on the IPv6 connections. All other teaming features will work on the IPv6 connections."

Interim Hack for Unsupported NICs

- Main issue for NICs with no IPv6 teaming support is DAD—Causes duplicate checks on Team and Physical even though the physical is not used for addressing
- Set DAD on Team interface to "0"—Understand what you are doing ©
- Microsoft Vista/Server 2008 allows for a command line change to reduce the "DAD transmits" value from 1 to 0

```
netsh interface ipv6 set interface 19 dadtransmits=0
```

Microsoft Windows 2003—Value is changed via a creation in the registry

```
\\HKLM\System\CurrentControlSet\Services\Tcpip6\Parameter s\Interfaces\(InterfaceGUID)\DupAddrDetectTransmits - Value "0"
```

Linux

```
# sysctl -w net/ipv6/conf/bond0/dad_transmits=0
net.ipv6.conf.eth0.dad_transmits = 0
```

Intel NIC Teaming—IPv6 (Pre Team)

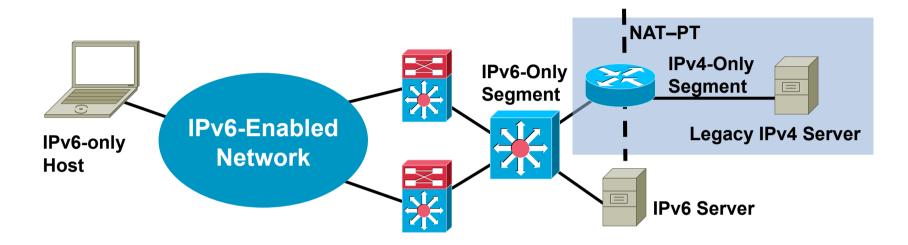
Intel NIC Teaming—IPv6 (Post Team)

Data Center—IPv6 on FWSM

Transparent Firewall Mode—Example

```
FWSM Version 3.1(3) <context>
firewall transparent
hostname WEBAPP
interface inside
nameif inside
bridge-group 1
 security-level 100
interface outside
nameif outside
bridge-group 1
 security-level 0
interface BVI1
 ip address 10.121.10.254 255.255.255.0
access-list BRIDGE TRAFFIC ethertype permit bpdu
access-list BRIDGE TRAFFIC ethertype permit 86dd
access-group BRIDGE TRAFFIC in interface inside
access-group BRIDGE TRAFFIC in interface outside
```

- Today, IPv6 inspection is supported in the routed firewall mode.
- Transparent mode can allow IPv6 traffic to be bridged (no inspection)


Permit ethertype 0x86dd (IPv6 ethertype)

Data Center—IPv6 on FWSM

Routed Firewall Mode—Example

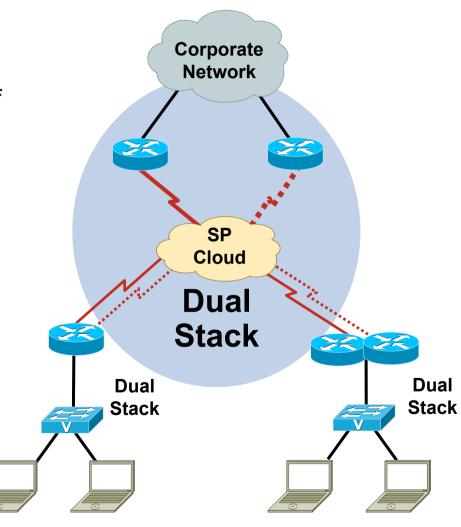
```
FWSM Version 3.1(3) <context>
hostname WEBAPP
interface inside
nameif inside
security-level 100
ipv6 address 2001:db8:cafe:10::f00d:1/64
interface outside
nameif outside
security-level 0
ipv6 address 2001:db8:cafe:101::f00d:1/64
                                                           GW to MSFC outside
                                                            VLAN intf.
ipv6 route outside ::/0 2001:db8:cafe:101::1
ipv6 access-list IPv6 1 permit icmp6 any 2001:db8:cafe:10::/64
ipv6 access-list IPv6 1 permit tcp 2001:db8:cafe:2::/64 host 2001:db8:cafe:10::7 eq www
access-group IPv6 1 in interface outside
```

Legacy Services (IPv4 Only)

- There will be many in-house developed applications that will never support IPv6—Move them to a legacy VLAN or server farm
- NAT-PT (Network Address Translation—Protocol Translation) as an option to front-end IPv4-only Server—Note: NAT-PT has been moved to experimental
- Place NAT-PT box as close to IPv4 only server as possible
- Be VERY aware of performance and manageability issues

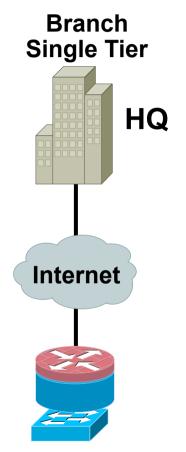
WAN/Branch

Deploying IPv6 in Branch Networks:

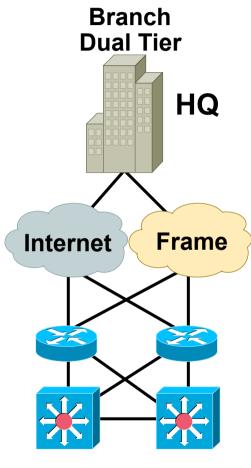

http://www.cisco.com/univercd/cc/td/doc/solution/brchipv6.pdf

ESE WAN/Branch Design and Implementation Guides: http://www.cisco.com/en/US/netsol/ns656/networking-solutions-design-guidances-list.html#anchor1

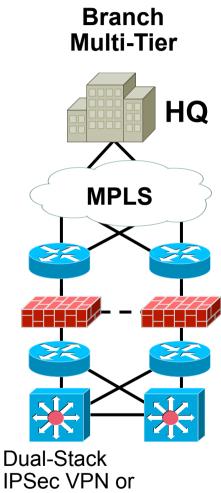
http://www.cisco.com/en/US/netsol/ns656/networking_solutions_design_guidances_list.html#anchor10


WAN/Branch Deployment

- Cisco routers have supported IPv6 for a long time
- Dual-stack should be the focus of your implementation...but, some situations still call for tunneling
- Support for every media/WAN type you want to use (Frame Relay, leased-line, broadband, MPLS, etc...)
- Don't assume all features for every technology are IPv6 -enabled
- Better feature support in WAN /Branch than in Campus/DC



IPv6 Enabled Branch


Take Your Pick—Mix-and-Match

Dual-Stack IPSec VPN (IPv4/IPv6) IOS Firewall (IPv4/IPv6) Integrated Switch (MLD-snooping)

Dual-Stack IPSec VPN or Frame Relay IOS Firewall (IPv4/IPv6) Switches (MLD-snooping)

IPSec VPN or
MPLS (6PE/6VPE)
Firewall (IPv4/IPv6)
Switches (MLD-snooping)

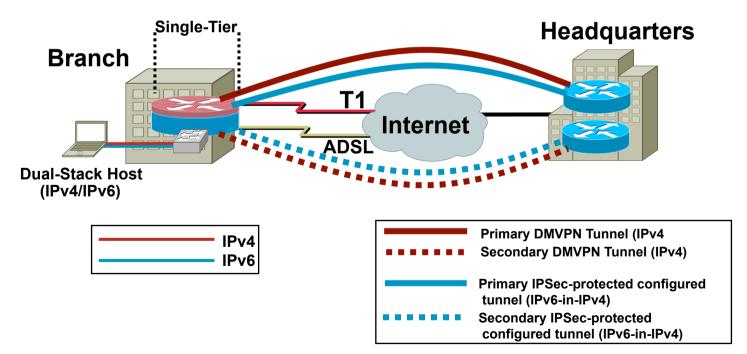
DMVPN with IPv6—12.4(20)T Feature

Example Tunnel Configuration

Spoke Router

```
interface Tunnel0
ipv6 address 2001:DB8:CAFE:1261::2/64
ipv6 enable
ipv6 mtu 1400
ipv6 eigrp 1
ipv6 nhrp authentication ESE
ipv6 nhrp map multicast 172.17.1.3
ipv6 nhrp map 2001:DB8:CAFE:1261::1/128 172.17.1.3
ipv6 nhrp network-id 100000
ipv6 nhrp holdtime 600
ipv6 nhrp nhs 2001:DB8:CAFE:1261::1
ipv6 nhrp cache non-authoritative
tunnel source 172.16.1.2
tunnel mode gre multipoint
tunnel key 100000
tunnel protection ipsec profile SPOKE
```

Hub Router


```
interface Tunnel0
ipv6 address 2001:DB8:CAFE:1261::1/64
ipv6 enable
ipv6 mtu 1400
ipv6 eigrp 1
no ipv6 split-horizon eigrp 1
ipv6 hold-time eigrp 1 35
no ipv6 next-hop-self eigrp 1
ipv6 nhrp authentication ESE
ipv6 nhrp map multicast dynamic
ipv6 nhrp network-id 100000
ipv6 nhrp holdtime 600
 ipv6 nhrp cache non-authoritative
tunnel source GigabitEthernet0/1
tunnel mode gre multipoint
tunnel key 100000
tunnel protection ipsec profile HUB
```


Hub

- Totally integrated solution Branch router and integrated EtherSwitch module – IOS FW and VPN for IPv6 and IPv4
- When SP does not offer IPv6 services, use IPv4 IPSec VPNs for manually configured tunnels (IPv6-in-IPv4) or DMVPN for IPv6
- When SP does offer IPv6 services, use IPv6 IPSec VPNs (Latest AIM/VAM supports IPv6 IPSec)

LAN Configuration

```
ipv6 unicast-routing
                                                  Router
ipv6 multicast-routing
ipv6 cef
ipv6 dhcp pool DATA VISTA
dns-server 2001:DB8:CAFE:10:20D:9DFF:FE93:B25D
domain-name cisco.com
interface GigabitEthernet1/0.100
description DATA VLAN for Computers
encapsulation dot10 100
ipv6 address 2001:DB8:CAFE:1100::BAD1:A001/64
                                                  Obtain "other" info
ipv6 nd other-config-flag
                                                  Enable DHCP
ipv6 dhcp server DATA VISTA
```

```
ipv6 mld snooping
!
interface Vlan100
  description VLAN100 for PCs and Switch management
  ipv6 address 2001:DB8:CAFE:1100::BAD2:F126/64
```

EtherSwitch Module

IPSec Configuration—1

```
crypto isakmp policy 1
encr 3des
authentication pre-share
                                                         Peer at HQ (Primary)
crypto isakmp key CISCO address 172.17.1.3
                                                         Peer at HQ (Secondary)
crypto isakmp key SYSTEMS address 172.17.1.4
crypto isakmp keepalive 10
                                                                                  Branch
crypto ipsec transform-set HE1 esp-3des esp-sha-hmac
crypto ipsec transform-set HE2 esp-3des esp-sha-hmac
crypto map IPv6-HE1 local-address Serial0/0/0
crypto map IPv6-HE1 1 ipsec-isakmp
set peer 172.17.1.3
                                                                     Internet
 set transform-set HE1
match address VPN-TO-HE1
crypto map IPv6-HE2 local-address Loopback0
crypto map IPv6-HE2 1 ipsec-isakmp
set peer 172.17.1.4
                                                        Secondary
                                                                                 Primary
 set transform-set HE2
                                                                  Headquarters
match address VPN-TO-HE2
```

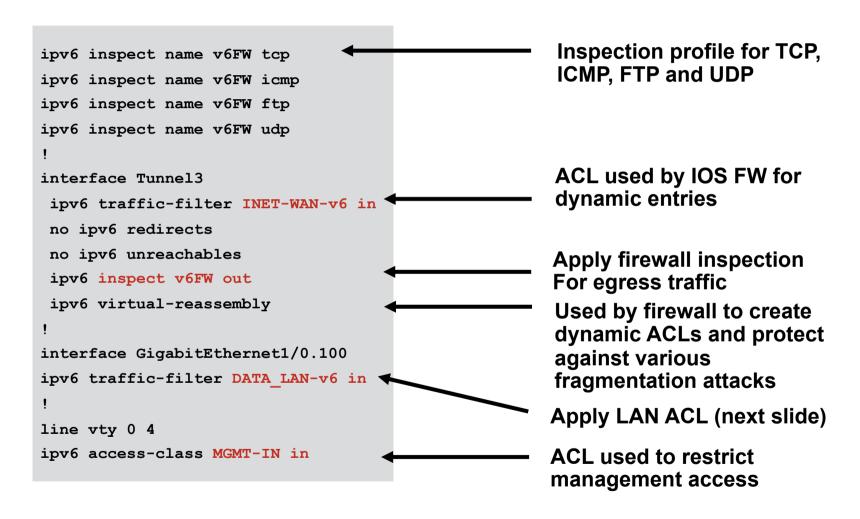
IPSec Configuration—2

```
interface Tunnel3
description IPv6 tunnel to HQ Head-end 1
delay 500
ipv6 address 2001:DB8:CAFE:1261::BAD1:A001/64
ipv6 mtu 1400
tunnel source Serial0/0/0
tunnel destination 172.17.1.3
tunnel mode ipv6ip
interface Tunnel4
description IPv6 tunnel to HQ Head-end 2
delay 2000
ipv6 address 2001:DB8:CAFE:1271::BAD1:A001/64
ipv6 mtu 1400
tunnel source Loopback0
tunnel destination 172.17.1.4
tunnel mode ipv6ip
interface Serial0/0/0
description to T1 Link Provider (PRIMARY)
crypto map IPv6-HE1
```

```
interface Dialer1
  description PPPoE to BB provider
  crypto map IPv6-HE2
!
ip access-list extended VPN-TO-HE1
  permit 41 host 172.16.1.2 host 172.17.1.3
ip access-list extended VPN-TO-HE2
  permit 41 host 10.124.100.1 host 172.17.1.4
```

- Adjust delay to prefer Tunnel3
- Adjust MTU to avoid fragmentation on router (PMTUD on client will not account for IPSec/Tunnel overheard)
- Permit "41" (IPv6) instead of "gre"

Single-Tier Profile Routing


```
ipv6 unicast-routing
ipv6 cef
key chain ESE
key 1
 key-string 7 111B180B101719
interface Tunnel3
description IPv6 tunnel to HQ Head-end 1
delay 500
ipv6 eigrp 1
ipv6 hold-time eigrp 1 35
ipv6 authentication mode eigrp 1 md5
ipv6 authentication key-chain eigrp 1 ESE
interface Tunnel4
description IPv6 tunnel to HQ Head-end 2
delay 2000
ipv6 eigrp 1
ipv6 hold-time eigrp 1 35
ipv6 authentication mode eigrp 1 md5
ipv6 authentication key-chain eigrp 1 ESE
```

```
interface Loopback0
  ipv6 eigrp 1
!
interface GigabitEthernet1/0.100
  description DATA VLAN for Computers
  ipv6 eigrp 1
!
ipv6 router eigrp 1
  router-id 10.124.100.1
  stub connected summary
  no shutdown
  passive-interface GigabitEthernet1/0.100
  passive-interface GigabitEthernet1/0.200
  passive-interface GigabitEthernet1/0.300
  passive-interface Loopback0
```

EtherSwitch Module

```
ipv6 route ::/0 Vlan100 FE80::217:94FF:FE90:2829
```

Security—1

Sample Only

Single-Tier Profile

Security—2

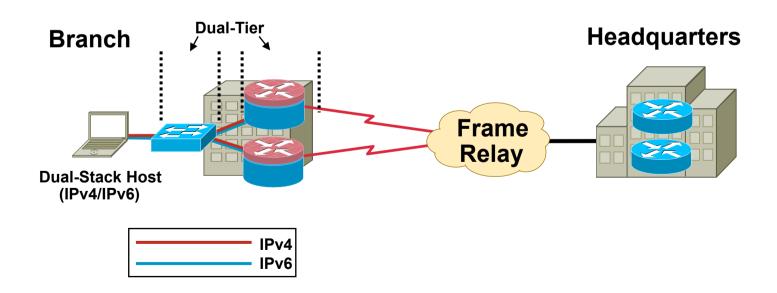
```
ipv6 access-list MGMT-IN
remark permit mgmt only to loopback
permit tcp 2001:DB8:CAFE::/48 host 2001:DB8:CAFE:1000::BAD1:A001
deny ipv6 any any log-input
ipv6 access-list DATA LAN-v6
remark PERMIT ICMPv6 PACKETS FROM HOSTS WITH PREFIX CAFE: 1100::/64
permit icmp 2001:DB8:CAFE:1100::/64 any
remark PERMIT IPv6 PACKETS FROM HOSTS WITH PREFIX CAFE: 1100::64
permit ipv6 2001:DB8:CAFE:1100::/64 any
remark PERMIT ALL ICMPv6 PACKETS SOURCED BY HOSTS USING THE LINK-LOCAL PREFIX
permit icmp FE80::/10 any
remark PERMIT DHCPv6 ALL-DHCP-AGENTS REQUESTS FROM HOSTS
permit udp any eq 546 any eq 547
remark DENY ALL OTHER IPv6 PACKETS AND LOG
deny ipv6 any any log-input
```

Sample Only

Single-Tier Profile

Security—3

```
ipv6 access-list INET-WAN-v6
remark PERMIT EIGRP for IPv6
permit 88 any any
remark PERMIT PIM for IPv6
permit 103 any any
remark PERMIT ALL ICMPv6 PACKETS SOURCED USING THE LINK-LOCAL PREFIX
permit icmp FE80::/10 any
remark PERMIT SSH TO LOCAL LOOPBACK
permit tcp any host 2001:DB8:CAFE:1000::BAD1:A001 eq 22
remark PERMIT ALL ICMPv6 PACKETS TO LOCAL LOOPBACK, VPN tunnels, VLANs
permit icmp any host 2001:DB8:CAFE:1000::BAD1:A001
permit icmp any host 2001:DB8:CAFE:1261::BAD1:A001
permit icmp any host 2001:DB8:CAFE:1271::BAD1:A001
permit icmp any 2001:DB8:CAFE:1100::/64
permit icmp any 2001:DB8:CAFE:1200::/64
permit icmp any 2001:DB8:CAFE:1300::/64
remark PERMIT ALL IPv6 PACKETS TO VLANs
permit ipv6 any 2001:DB8:CAFE:1100::/64
permit ipv6 any 2001:DB8:CAFE:1200::/64
permit ipv6 any 2001:DB8:CAFE:1300::/64
 deny ipv6 any any log
```


```
class-map match-any BRANCH-TRANSACTIONAL-DATA
match protocol citrix
match protocol ldap
match protocol sqlnet
match protocol http url "*cisco.com"
match access-group name BRANCH-TRANSACTIONAL-V6
policy-map BRANCH-WAN-EDGE
 class TRANSACTIONAL-DATA
 bandwidth percent 12
  random-detect dscp-based
policy-map BRANCH-LAN-EDGE-IN
 class BRANCH-TRANSACTIONAL-DATA
  set dscp af21
ipv6 access-list BRANCH-TRANSACTIONAL-V6
remark Microsoft RDP traffic-mark dscp af21
permit tcp any any eq 3389
permit udp any any eq 3389
```

```
interface GigabitEthernet1/0.100
  description DATA VLAN for Computers
  service-policy input BRANCH-LAN-EDGE-IN
!
interface Serial0/0/0
  description to T1 Link Provider
  max-reserved-bandwidth 100
  service-policy output BRANCH-WAN-EDGE
```

- Some features of QoS do not yet support IPv6
- NBAR is used for IPv4, but ACLs must be used for IPv6 (until NBAR supports IPv6)
- Match/Set v4/v6 packets in same policy

Dual-Tier Profile

- Redundant set of branch routers—Separate branch switch (multiple switches can use StackWise technology)
- Each branch router uses a single frame-relay connection
- All dual-stack (branch LAN and WAN)—no tunnels needed

Dual-Tier Profile

Configuration

Branch Router 1

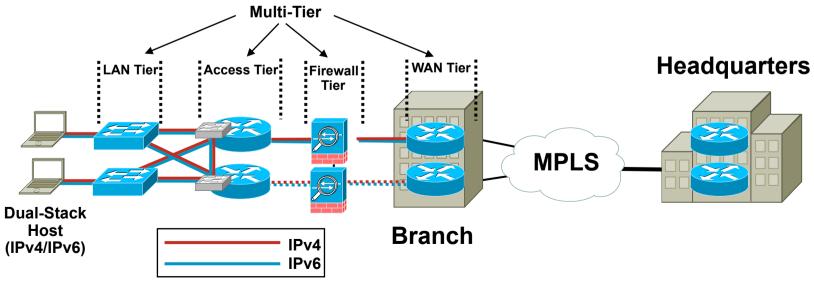
```
interface Serial0/1/0.17 point-to-point
description TO FRAME-RELAY PROVIDER
ipv6 address 2001:DB8:CAFE:1262::BAD1:1010/64
ipv6 eigrp 1
ipv6 hold-time eigrp 1 35
ipv6 authentication mode eigrp 1 md5
ipv6 authentication key-chain eigrp 1 ESE
frame-relay interface-dlci 17
 class OOS-BR2-MAP
interface FastEthernet0/0.100
ipv6 address 2001:DB8:CAFE:2100::BAD1:1010/64
ipv6 traffic-filter DATA LAN-v6 in
ipv6 nd other-config-flag
ipv6 dhcp server DATA VISTA
ipv6 eigrp 1
standby version 2
standby 201 ipv6 autoconfig
standby 201 priority 120
standby 201 preempt delay minimum 30
standby 201 authentication ese
standby 201 track Serial0/1/0.17 90
```

Branch Router 2

```
interface Serial0/2/0.18 point-to-point
description TO FRAME-RELAY PROVIDER
ipv6 address 2001:DB8:CAFE:1272::BAD1:1020/64
ipv6 eigrp 1
ipv6 hold-time eigrp 1 35
ipv6 authentication mode eigrp 1 md5
ipv6 authentication key-chain eigrp 1 ESE
frame-relay interface-dlci 18
  class OOS-BR2-MAP
interface FastEthernet0/0.100
ipv6 address 2001:DB8:CAFE:2100::BAD1:1020/64
ipv6 traffic-filter DATA LAN-v6 in
ipv6 nd other-config-flag
ipv6 eigrp 1
standby version 2
standby 201 ipv6 autoconfig
standby 201 preempt
standby 201 authentication ese
```

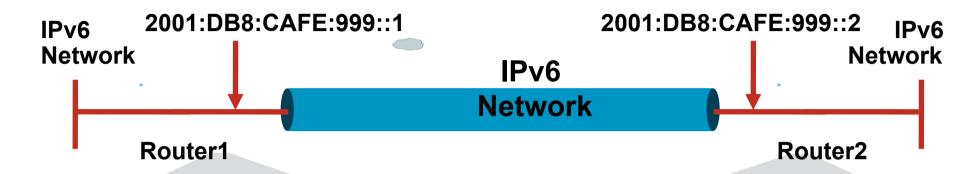
Multi-Tier Profile

All branch elements are redundant and separate


WAN Tier—WAN connections—Can be anything (Frame/IPSec)—MPLS shown here

Firewall Tier—Redundant ASA Firewalls

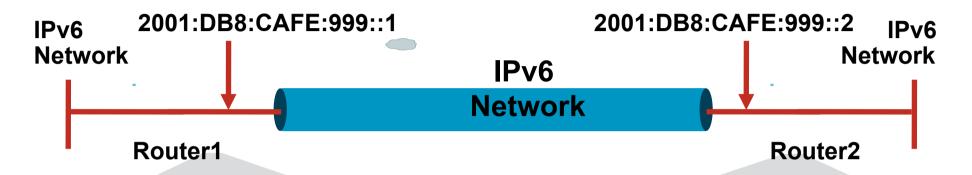
Access Tier—Internal services routers (like a campus distribution layer)


LAN Tier—Access switches (like a campus access layer

Dual-stack is used on every tier—If SP provides IPv6 services via MPLS.
 If not, tunnels can be used from WAN tier to HQ site

IPv6 IPSec Example

IKE/IPSec Policies




```
crypto isakmp policy 1
authentication pre-share
crypto isakmp key CISCOKEY address ipv6
2001:DB8:CAFE:999::2/128
crypto isakmp keepalive 10 2
!
crypto ipsec transform-set v6STRONG
esp-3des esp-sha-hmac
!
crypto ipsec profile v6PRO
set transform-set v6STRONG
```

```
crypto isakmp policy 1
authentication pre-share
crypto isakmp key CISCOKEY address ipv6
2001:DB8:CAFE:999::1/128
crypto isakmp keepalive 10 2
!
crypto ipsec transform-set v6STRONG
esp-3des esp-sha-hmac
!
crypto ipsec profile v6PRO
set transform-set v6STRONG
```

IPv6 IPSec Example

Tunnels


```
interface Tunnel0
  ipv6 address 2001:DB8:CAFE:F00D::1/127
  ipv6 eigrp 1
  ipv6 mtu 1400
  tunnel source Serial2/0
  tunnel destination 2001:DB8:CAFE
:999::2
  tunnel mode ipsec ipv6
  tunnel protection ipsec profile v6PRO
!
interface Ethernet0/0
  ipv6 address 2001:DB8:CAFE:100::1/64
  ipv6 eigrp 1
!
interface Serial2/0
  ipv6 address 2001:DB8:CAFE:999::1/127
```

```
interface Tunnel0
  ipv6 address 2001:DB8:CAFE:F00D::2/127
  ipv6 eigrp 1
  ipv6 mtu 1400
  tunnel source Serial2/0
  tunnel destination 2001:DB8:CAFE
:999::1
  tunnel mode ipsec ipv6
  tunnel protection ipsec profile v6PRO
!
interface Ethernet0/0
  ipv6 address 2001:DB8:CAFE:200::1/64
  ipv6 eigrp 1
!
interface Serial2/0
  ipv6 address 2001:DB8:CAFE:999::2/127
```

IPv6 IPSec Example

Show Output

Router1#show crypto engine connections active Crypto Engine Connections

TD	Intic	туре	Algorithm	Encrypt	Decrypt	IP-Address
3	Tu0	ipsec	3DES+SHA	0	17	2001:DB8:CAFE:999::1
4	Tu0	ipsec	3DES+SHA	16	0	2001:DB8:CAFE:999::1
1006	Tu0	IKE	SHA+DES	0	0	2001:DB8:CAFE:999::1

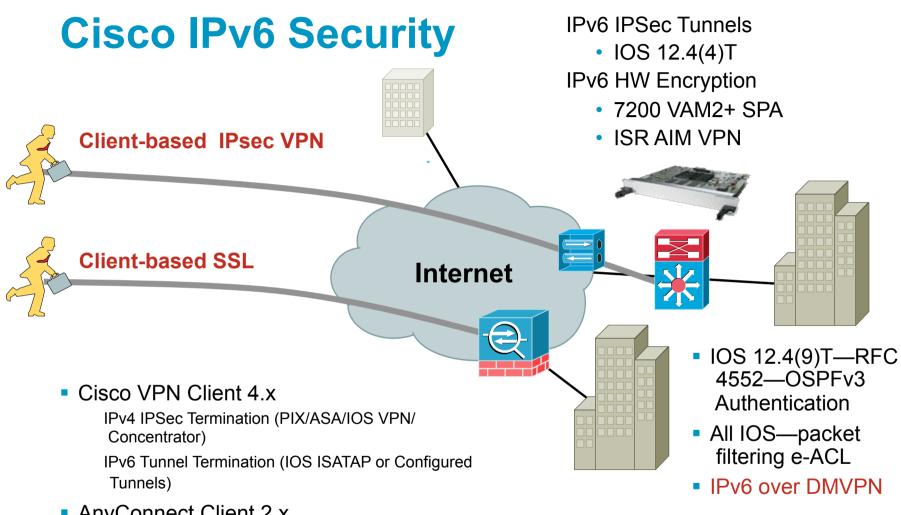
Router1#show crypto sessions Crypto session current status

Interface: Tunnel0

Session status: UP-ACTIVE

Peer: 2001:DB8:CAFE:999::2 port 500

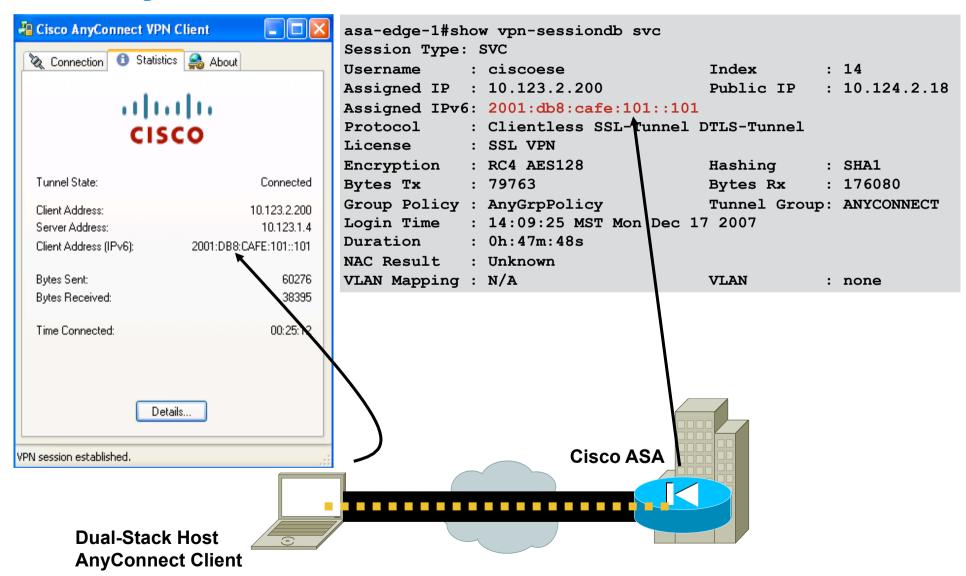
IKE SA: local 2001:DB8:CAFE:999::1/500


remote 2001:DB8:CAFE:999::2/500 Active

ipsec FLOW: permit 41 ::/0 ::/0

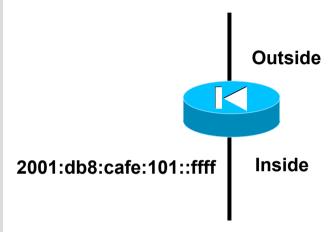
Active SAs: 2, origin: crypto map

Remote Access


AnyConnect Client 2.x

SSL/TLS or DTLS (datagram TLS = TLS over UDP Tunnel transports both IPv4 and IPv6 and the packets exit the tunnel at the hub ASA as native IPv4 and IPv6.

IPv6 Firewall


- IOS Firewall 12.3T, 12.4, 12.4T
- FWSM 3.x
- PIX 7.x +, including ASA 5500 series

AnyConnect 2.x—SSL VPN

AnyConnect 2.x—Summary Configuration

```
interface GigabitEthernet0/0
  nameif outside
  security-level 0
  ip address 10.123.1.4 255.255.255.0
  ipv6 enable
!
interface GigabitEthernet0/1
  nameif inside
  security-level 100
  ip address 10.123.2.4 255.255.255.0
  ipv6 address 2001:db8:cafe:101::fffff/64
!
ipv6 local pool ANYv6POOL 2001:db8:cafe:101::101/64 200
```



```
webvpn
 enable outside
svc enable
tunnel-group-list enable
group-policy AnyGrpPolicy internal
group-policy AnyGrpPolicy attributes
vpn-tunnel-protocol svc
default-domain value cisco.com
address-pools value AnyPool
tunnel-group ANYCONNECT type remote-access
tunnel-group ANYCONNECT general-attributes
address-pool AnyPool
ipv6-address-pool ANYv6POOL
default-group-policy AnyGrpPolicy
tunnel-group ANYCONNECT webvpn-attributes
group-alias ANYCONNECT enable
```

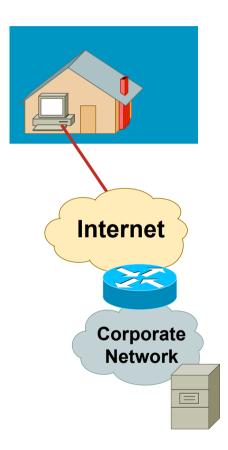
crypto ca trustpoint ASDM_TrustPoint0
enrollment self
fqdn asa-edge-1.cisco.com
subject-name CN=asa-edge-1
keypair esevpnkeypair
no client-types
crl configure
ssl trust-point ASDM_TrustPoint0 outside

http://www.cisco.com/en/US/docs/security/ vpn_client/anyconnect/anyconnect20/ administrative/guide/admin6.html#wp1002258

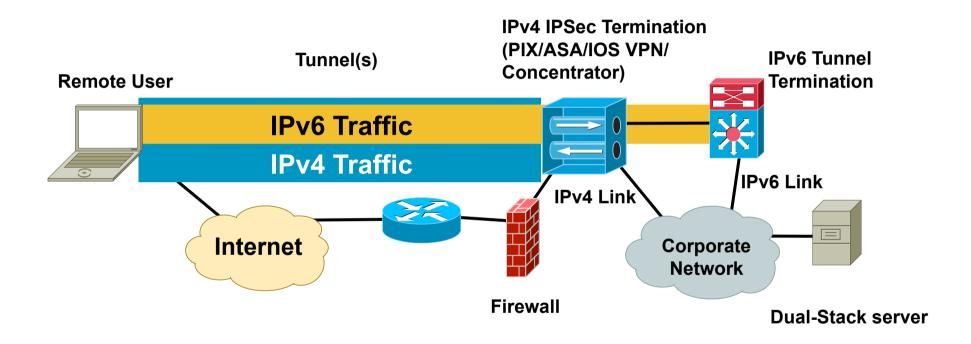
RKRST-2301

IPv6 for Remote Devices

- Remote hosts can use a VPN client or router to establish connectivity back to enterprise
- Possible over IPv4 today, not possible over IPv6...yet
- How you allow access to IPv6 services at central site or Internet in a secure fashion?


Enabling IPv6 traffic inside the Cisco VPN client tunnel

Allow remote host to establish a v6-in-v4 tunnel either automatically or manually


ISATAP—Intra Site Automatic Tunnel Addressing Protocol

Configured—Static configuration for each side of tunnel

Same split-tunneling issues exists

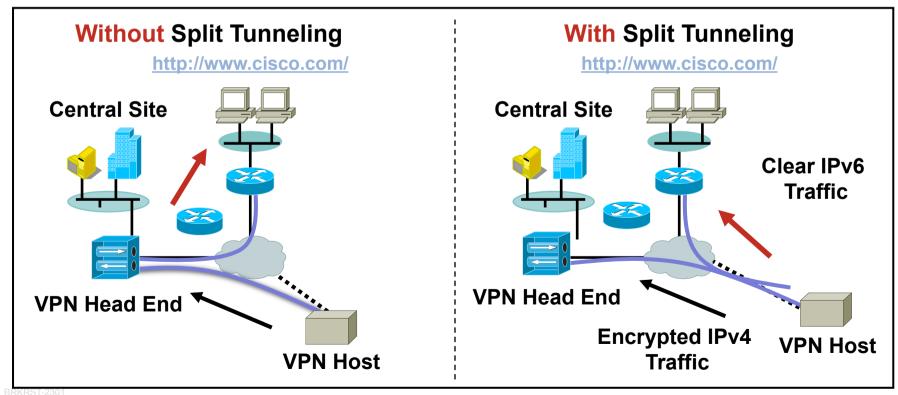
IPv6-in-IPv4 Tunnel Example— Cisco VPN Client

Considerations

 Cisco IOS® version supporting IPv6 configured/ ISATAP tunnels

```
Configured—12.3(1)M/12.3(2)T/12.2(14)S and above (12.4M/12.4T) ISATAP—12.3(1)M, 12.3(2)T, 12.2(14)S and above (12.4M/12.4T) Catalyst® 6500 with Sup720/32—12.2(17a)SX1—HW forwarding
```

Be aware of the security issues if split-tunneling is used


Attacker can come in IPv6 interface and jump on the IPv4 interface (encrypted to enterprise)

In Windows Firewall—default policy is to DENY packets from one interface to another

- Remember that the IPv6 tunneled traffic is still encapsulated as a tunnel WHEN it leaves the VPN device
- Allow IPv6 tunneled traffic across access lists (Protocol 41)

Split Tunneling

- Ensure that the IPv6 traffic is properly routed through the IPv4 IPSec tunnel
- IPv6 traffic MAY take a path via the clear (unencrypted) route
- This is bad if you are unaware that it is happening

Required Stuff: Client Side

Client operating system with IPv6

Microsoft Windows XP SP1/2003 and Vista/Server 2008 (Supports Configured/ISATAP)

Linux (7.3 or higher)—USAGI port required for ISATAP

Mac OS X (10.2 or higher)—Currently need a VPN device on client network

SunOS (8 or higher)—Currently need a VPN device on client network

See reference slide for links/OS listing

 Cisco VPN Client 4.0.1 and higher for configured/ISATAP

IPv6 Using Cisco VPN Client

Example: Client Configuration (Windows XP): ISATAP

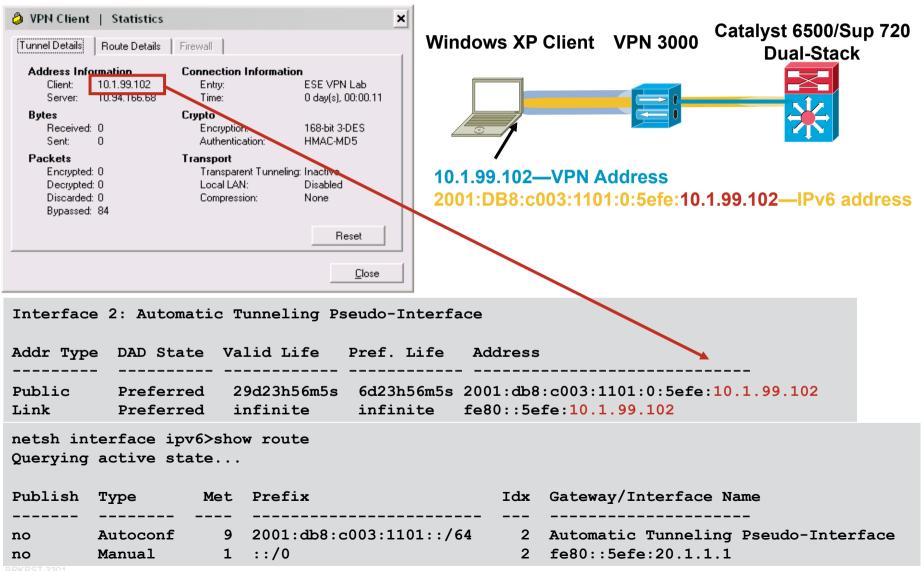
- Microsoft Windows XP (SP1 or higher)
- IPv6 must be installed
- XP will automatically attempt to resolve the name "ISATAP"

Local host name

Hosts file—SystemRoot\system32\drivers\etc

DNS name query

NetBIOS and Lmhosts


Manual ISATAP router entry can be made

```
netsh interface ipv6 isatap set router 20.1.1.1
```

- Key fact here is that NO additional configuration on the client is needed again!
- Use previous ISATAP configurations shown for router-side

Note: ISATAP is supported on some versions of Linux/BSD (manual router entry is required)

Does It Work?

IPv6 Addressing

= 5,23 * 10 ²⁸ = 52 thousand trillion trillion per person

World's population is approximately 6.5 billion

2¹²⁸

6.5

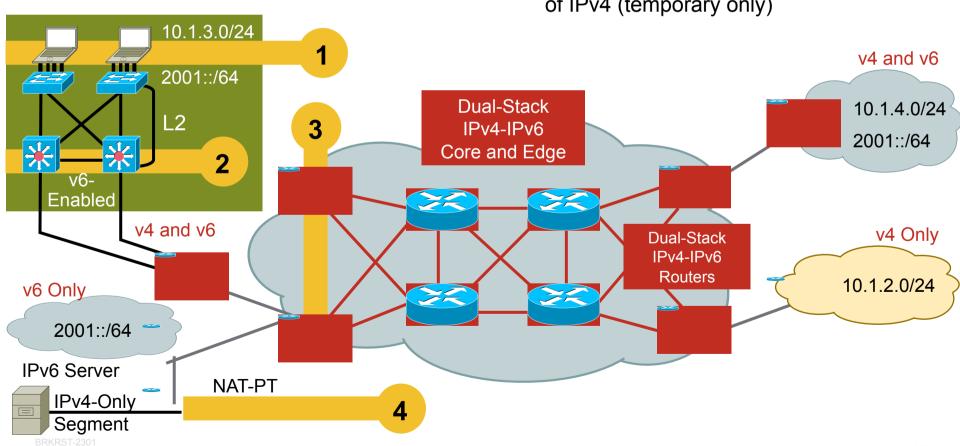
Billion

Planning and Deployment Summary

IPv6 Integration Outline

Pre-Deployment Phases

- Establish the network starting point
- Importance of a network assessment and available tools
- Defining early IPv6 security guidelines and requirements
- Additional IPv6 "predeployment" tasks needing consideration


Deployment Phases

- Transport considerations for integration
- Campus IPv6 integration options
- WAN IPv6 integration options
- Advanced IPv6 services options

Integration/Coexistence Starting Points

Example: Integration Demarc/Start Points in Campus/WAN

- Start dual-stack on hosts/OS
- Start dual-stack in campus distribution layer (details follow)
- Start dual-stack on the WAN/campus core/edge routers
- NAT-PT for servers/apps only capable of IPv4 (temporary only)

Pre-Deployment Checklist

Other Critical Network Planning Requirements

- ✓ Establish starting point, network assessment, security guidelines
- ✓ Acquire IPv6 address block and create IPv6 addressing scheme
- Create and budget for an IPv6 lab that closely emulates all network elements (routers, switches, hosts, OS)
- ✓ Upgrade DNS server to support IPv6
- Establish network management considerations (hardware, MIBs required for v6, etc.)
- Routing and multicast protocol and selection/evaluation process (align with IPv4 choice is possible)
- Consider options for centralized ISATAP router (see campus example)
- Evaluate IPv6-capable transport services available from current Service Provider (SP)

Link support to timeline needed, not before

Does L3 VPN service support QoS? Dual-homing? Security at NAP?

Transport Deployment Options for Integration

Applied to Campus, WAN, Branch, and Other

Campus (also applies to Data Center)

Dual-stack (IPv4/v6 enabled on all L3 devices—core/distr/access)

Hybrid (combination dual-stack, tunnels, ISATAP)

Services block (dedicated for IPv6 ISATAP tunnel termination)

WAN (used for core or branch interconnect)

Dual-stack core/edge

WAN L2 transport (IPv4/v6 over ATM/FR, PPP/HDLC, T1/T3, OC-x)

Metro Service (Ethernet, point-to-point, point-to-multipoint)

VPN/transport considerations

Self-deployed MPLS VPNs: PE to PE (VPN or non-VPN service)

SP Offering L3 VPN service: CE to CE (encryption? QoS? multicast?)

Overlay 6 over 4 IPSec: site-to-site, VPN client-based using ISATAP

IPv6 over WiFi (802.1x is not required to be supported over IPv6)

Other service options

Broadband, internet (as transport), remote access supporting IPv6

General IPv6 Requirements

Considered in Each Place in the Network

General Coexistence

IPv4 and IPv6 coexist with no impact on performance

Flexible integration tools

Routing

High-performance IPv6-aware routing protocols

QoS

Identify and prioritize traffic based upon a wide-variety of criteria

Contiguous over campus, WAN, branch

SP offered

IP Multicast

Optimize traffic utilization with a broad range of deployment types

Security

User-based policy enforcement

Stress Host-based features

Privacy extensions

Monitoring and reporting

Mobility

Access to applications and services while in motion

Design into core infrastructure for IPv4 and IPv6

Each Category Applied to Campus, WAN, Branch, Other

Industry's Broadest Platform Support

Cisco IOS 12.0S

Cisco 12000 Series Routers Cisco 10720 Series

Cisco IOS 12.4/12.4T

Cisco 800 Series Routers

Cisco 1700 Series Routers

Cisco 1800 Series Routers

Cisco 2600 Series Routers

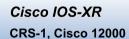
Cisco 2800 Series Routers

Cisco 3600 Series Routers

Cisco 3700 Series Routers

Cisco 3800 Series Routers

Cisco 7200 Series Routers


Cisco 7301 Series Routers

Cisco 7500 Series Routers (EoL)

Cisco IOS 12.2S family

Cisco ASR1000 series

Cisco 72/7300 Series Routers

Cisco 75/7600 Series Routers

Cisco 10000 Series Routers

Catalyst 3750/3560/2960 Series

Catalyst 4500 Series

Catalyst 6500 Series

Cisco Product Portfolio
ASA Firewall (7.x), FWSM 3.1,
LMS 2.5, CNR 6.2, NFC 5.x, NAM 3.x,
MDS9500 series, Nexus 7000, GGSN 7.0

High Capacity Forwarding Cisco IPv6 Solutions

Cisco CRS-1

OC-768, OC-48, 10GE and GE line cards

Cisco 12000 series

Internet Service Engine 3 – up to 3.8Mpps per LC Internet Service Engine 5 – Up to 16Mpps per LC

- Cisco 10000 PRE2/PRE3/PRE4
- Cisco ASR 1000 series
- Cisco 7600 and Catalyst 6500 series

Sup. Engine 720, 720-3BXL, 32W, 32/PISA, RSP720 – up to 200Mpps (EANTC report)

- Nexus 7000 series, MDS 9500 series
- Catalyst 4500 series

Supervisor Engine 6E

Catalyst 3750/3560 & 3750E/3560E series

Other Security Products

ASA Firewall

Since version 7.0

Dual stack, IPv6 only,

No header extension parsing, no stateful-failover (coming)

FWSM

IPv6 in software...

Cisco Security Agent

Needs CSA 6.0 for IPv6 network protection

IPS

Needs 6.2 (not yet FCS...)

Cisco IPv6 compliance

Conformance tests + Interoperability tests

IPv6 Ready Logo – <u>www.ipv6ready.org</u>

US DoD JITC conformance - http://jitc.fhu.disa.mil/apl/ipv6.html

Cable Labs DOCSIS 3.0 conformance

Microsoft Vista/Server 2008 interoperability – Vista logo

Cisco IOS Release certification

Cisco IOS 12.4(11)T, C7600, C6500, C4500, IOS Firewall achieved JITC certification

Cisco IOS 12.3, 12.3T, 12.2SX, 12.0S and XR (3.2) are compliant with the IPv6 Ready Logo Phase I

Cisco IOS 12.4(9)T is compliant with IPv6 Ready Logo Phase II core specs DOCSIS 3.0 Bronze qualified

Issues for success

Focus on Business Value...

Most early success has been in closed environments.

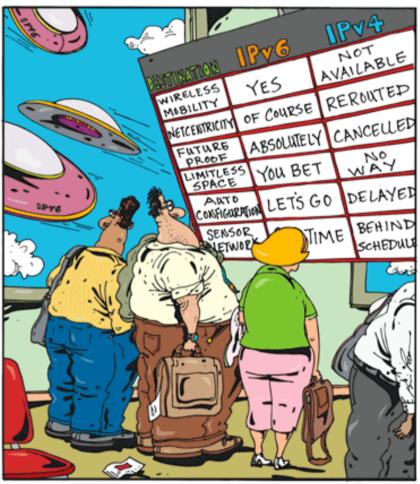
Dual stack simplifies the overall task of transition by allowing graceful one-application-at-a-time deployments, *BUT* that can't happen without IPv4.

There will be a panic in the press once the IPv4 pool is depleted.

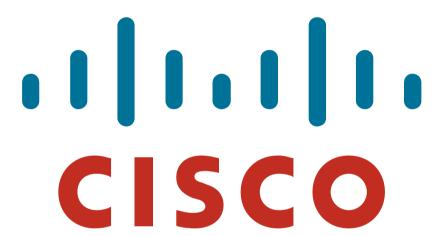
Carriers will be required to support IPv4 until their customers move. The current retail rate is ~\$1/day /address, and the cost of scarce commodities generally does not go down...

Conclusion

- Start learning now—Books, presentations, your own pilot lab
- Create a virtual team of IT representatives from every area of IT to ensure coverage for OS, Apps, Network and Operations/Management
- Microsoft Windows Vista and Server 2008 will have IPv6 enabled by default—Understand what impact any OS has on the network
- Things to consider:


Full parity between IPv4 and IPv6 is the goal, but not a reality today

Watch the standards and policies


CRC

Famous last words...

Suddenly, it dawned on Ronald that he needed to be on the right flight plan and IPv6 Seemed to be just the ticket.

Appendix Slides For Reference Only

Appendix: Microsoft Windows Vista/Server 2008

Understand the Behavior of Vista

IPv6 is preferred over IPv4

Vista sends IPv6 NA/NS/RS upon link-up

Attempts DHCP for IPv6

If no DHCP or local RA received with Global or ULA, then try ISATAP

If no ISATAP, then try Teredo

- Become familiar with Teredo <u>http://www.microsoft.com/technet/prodtechnol/winxppro/maintain/teredo.mspx</u>
- ANY application built on the Peer-to-Peer Framework REQUIRES
 IPv6 and will NOT function over IPv4 -

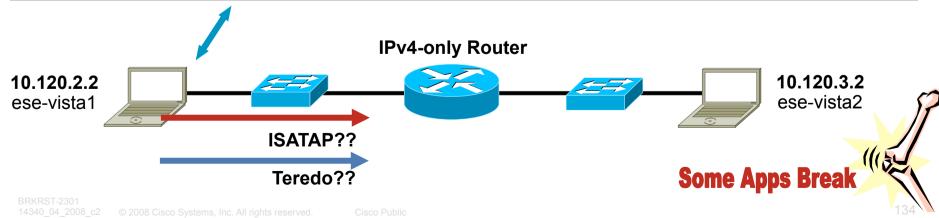
http://www.microsoft.com/technet/network/p2p/default.mspx

In More Detail—Vista on Link-Up

No Network Services

No. Time 1 0.000000 2 0.000030 3 0.000080 4 1.155917 5 1.156683 6 3.484709	Source :: fe80::80aa:fd5:f7ae:4361 fe80::80aa:fd5:f7ae:4361 fe80::80aa:fd5:f7ae:4361 169.254.67.97	Destination ff02::1:ffae:4361 ff02::2 ff02::16 ff02::1:3 224.0.0.252 169.254.255.255	Protocol Info ICMPv6 Neighbor solicitation ICMPv6 Router solicitation ICMPv6 Multicast Listener Report Message v2 UDP Source port: 49722 Destination port: 5355 UDP Source port: 49723 Destination port: 5355 NBNS Name query NB ISATAP<00>
6 3.484709	169.254.67.97	169.254.255.255	NBNS Name query NB ISATAP <00> DHCPv6 Information-request DHCP DHCP Discover—Transaction ID 0x6c8d6efa
7 126.409530	fe80::80aa:fd5:f7ae:4361	ff02::1:2	
8 128.886397	0.0.0.0	255.255.255.255	

- 1. Unspecified address :: → Solicited node address NS/DAD
- Looking for a local router → ff02::2 RS
- 3. Looking for MLD enabled routers → ff02::16 MLDv2 report
- 4. LLMNR for IPv6—ff02::1:3—advertise hostname
- 5. LLMNR for IPv4—224.0.0.252 from RFC 3927 address
- 6. No global or ULA received via step 1/2—Try ISATAP
- 7. Try DHCP for IPv6—ff02::1:2
- 8. Try DHCP for IPv4


fe80::80aa:fd5:f7ae:4361

ese-vista1

IPv4 Network—No IPv6 Network Services

What Does Vista Try to Do?

No. Time 13 8.813509	Source 10.120.2.1	Destination 10.120.2.2	Protocol Info DHCP DHCP ACK - Transaction ID 0x2b8af443				
Bootstrap Protocol							
 Your (client) IP address: 10.120.2.2 (10.120.2.2)							
Option: (t=3,l=4) Router = 10.120.2.1 Option: (t=6,l=4) Domain Name Server = 10.121.11.4 Option: (t=15,l=9) Domain Name = " cisco.com "							
No. Time 70 13.36075	Source 6 10.120.2.2	Destination 10.121.11.4	Protocol Info DNS Standard query A isatap.cisco.com				
No. Time 138 25.3621	Source 81 10.120.2.2	Destination 10.121.11.4	Protocol Info DNS Standard query A teredo.ipv6.microsoft.com				
581 296.687 582 296.687	Source 197 10.120.2.2 721 10.120.3.2 794 10.120.2.2 913 10.120.2.2	Destination 10.120.3.2 10.120.2.2 10.120.3.2 10.120.3.2	Protocol Info TCP 49211 > epmap [SYN] Seq=0 Len=0 MSS=1460 WS=8 TCP epmap > 49211 [SYN, ACK] Seq=0 Ack=1 Win=2097152 TCP 49211 > epmap [ACK] Seq=1 Ack=1 Win=65536 Len=0 DCERPC Bind: call_id: 1, 2 context items, 1st IOXIDResolver V0.0				

What Is Teredo?

- RFC4380
- Tunnel IPv6 through NATs (NAT types defined in RFC3489)

Full Cone NATs (aka one-to-one)—Supported by Teredo

Restricted NATs—Supported by Teredo

Symmetric NATs—Supported by Teredo with Vista/Server 2008 if only one Teredo client is behind a Symmetric NATs

- Uses UDP port 3544
- Is complex—many sequences for communication and has several attack vectors
- Available on:

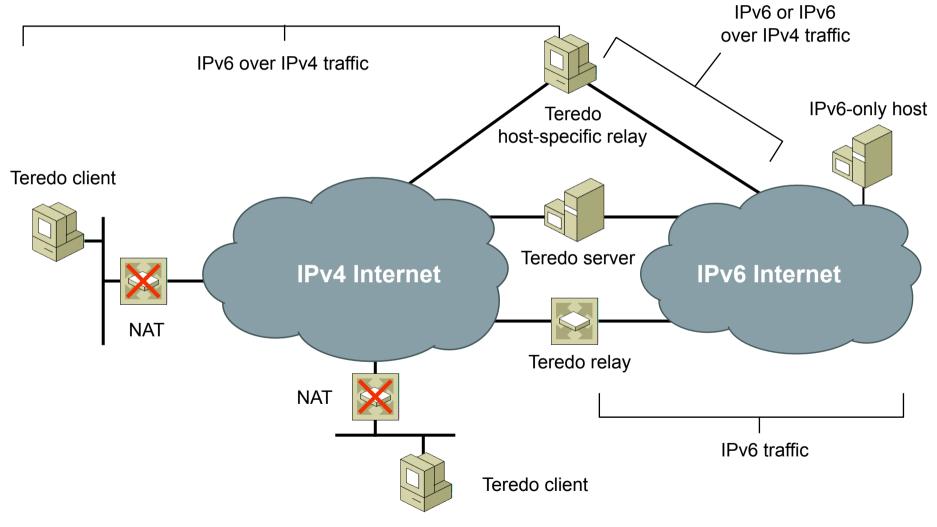
Microsoft Windows XP SP1 w/Advanced Networking Pack

Microsoft Windows Server 2003 SP1

Microsoft Windows Vista (enabled by default—inactive until application requires it)

Microsoft Server 2008

http://www.microsoft.com/technet/prodtechnol/winxppro/maintain/teredo.mspx


Linux, BSD and Mac OS X—"Miredo"

http://www.simphalempin.com/dev/miredo/

Teredo Components

- Teredo Client—Dual-stack node that supports Teredo tunneling to other Teredo clients or IPv6 nodes (via a relay)
- Teredo Server—Dual-stack node connected to IPv4 Internet and IPv6 Internet. Assists in addressing of Teredo clients and initial communication between clients and/or IPv6-only hosts—Listens on UDP port 3544
- Teredo Relay—Dual-stack router that forwards packets between Teredo clients and IPv6-only hosts
- Teredo Host-Specific Relay—Dual-stack node that is connected to IPv4 Internet and IPv6 Internet and can communicate with Teredo Clients without the need for a Teredo Relay

Teredo Overview

*From Microsoft "Teredo Overview" paper

Teredo Address

- Teredo IPv6 prefix (2001::/32—previously was 3FFE:831F::/32)
- Teredo Server IPv4 address: global address of the server
- Flags: defines NAT type (e.g. Cone NAT)
- Obfuscated External Port: UDP port number to be used with the IPv4 address
- Obfuscated External Address: contains the global address of the NAT

Initial Configuration for Client

- 1. RS message sent from Teredo client to server—RS from LL address with Cone flag set
- 2. Server responds with RA—RS has Cone flag set—server sends RA from alternate v4 addres s—if client receives the RA, client is behind cone NAT
- 3. If RA is not received by client, client sends another RA with Cone flag not set
- Server responds with RA from v4 address = destination v4 address from RS—if client receives the RA, client is behind restricted NAT
- 5. To ensure client is not behind symmetric NAT, client sends another RS to secondary server
- 6. 2nd server sends an RA to client—client compares mapped address and UDP ports in the Origin indicators of the RA received by both servers. If different, then the NAT is mapping same internal address/port to different external address/port and NAT is a symmetric NAT
- 7. Client constructs Teredo address from RA

First 64 bits are the value from prefix received in RA (32 bits for IPv6 Teredo prefix + 32 bits of hex representation of IPv4 Teredo server address)

Next 16 bits are the Flags field (0x0000 = Restricted NAT, 0x8000 = Cone NAT)

Next 16 bits are external obscured UDP port from Origin indicator in RA

Last 32 bits are obscured external IP address from Origin indicator in RA

Teredo

Server 2

Teredo

Teredo

Teredo

Flags Ext. UDP External v4

Prefix

Server v4

Port v4

address

What Happens on the Wire—1

 No.
 Time
 Source
 Destination
 Protocol Info

 15 25.468050
 172.16.1.103
 151.164.11.201
 DNS
 Standard query A teredo.ipv6.microsoft.com

 No.
 Time
 Source
 Destination
 Protocol Info
 16 25.481609
 151.164.11.201
 172.16.1.103
 DNS
 Standard query response A 65.54.227.126 A

 65.54.227.127 A 65.54.227.120 A 65.54.227.124
 Standard query response A 65.54.227.126 A

```
netsh interface ipv6>sh teredo
Teredo Parameters
                      : client
: teredo.ipv6.microsoft.com
Type
Server Name
                          : default
Client Refresh Interval
                            : default
Client Port
State
                            : probe(cone)
                             : teredo client
Type
                             : unmanaged
Network
NAT
                             : cone
```

```
netsh interface ipv6>sh teredo
Teredo Parameters
                               : client
Type
Server Name
                               : teredo.ipv6.microsoft.com
Client Refresh Interval
                              : default
Client Port
                               : default
State
                               : qualified
                               : teredo client
Type
Network
                              : unmanaged
NAT
                               : restricted
```

What Happens on the Wire—2

Time Source Protocol Info Destination No 28 **33**.595460 **fe80::8000:ffff:ffff** ff02::2 ICMPv6 Router solicitation Internet Protocol, Src: 172.16.1.103 (172.16.1.103), Dst: 65.54.227.126 (65.54.227.126) User Datagram Protocol, Src Port: 1109 (1109), Dst Port: 3544 (3544) Destination Protocol Info No. Time Source 29 **37**.593598 **fe80**::**8000**:**ffff**:**ffff**d ff02::2 ICMPv6 Router solicitation Internet Protocol, Src: 172.16.1.103 (172.16.1.103), Dst: 65.54.227.126 (65.54.227.126) Destination No. Time Protocol Info Source 31 45.546052 **fe80**::ffff:fffd ff02::2 ICMPv6 Router solicitation Internet Protocol, Src: **172.16.1.103** (172.16.1.103), Dst: **65.54.227.127** (65.54.227.127) User Datagram Protocol, Src Port: 1109 (1109), Dst Port: 3544 (3544) No. Time Destination Protocol Info Source 32 46.039706 **fe80::8000:f227:bec9:1c81 fe80::ffff:ffff** ICMPv6 Router advertisement Internet Protocol, Src: 65.54.227.127 (65.54.227.127), Dst: 172.16.1.103 (172.16.1.103) User Datagram Protocol, Src Port: 3544 (3544), Dst Port: 1109 (1109) Teredo Origin Indication header Origin UDP port: 1109 Origin IPv4 address: **70.120.2.1** (70.120.2.1) Prefix: 2001:0:4136:e37e:: Source Destination Protocol Info No. Time 33 46.093832 **fe80::ffff:ffff** ff02::2 ICMPv6 Router solicitation Internet Protocol, Src: **172.16.1.103** (172.16.1.103), Dst: **65.54.227.126** (65.54.227.126) User Datagram Protocol, Src Port: 1109 (1109), Dst Port: 3544 (3544) No. Time Source Destination Protocol Info 34 46.398745 **fe80::8000:f227:bec9:1c81 fe80::ffff:ffff** ICMPv6 Router advertisement Internet Protocol, Src: 65.54.227.126 (65.54.227.126), Dst: 172.16.1.103 (172.16.1.103) Teredo Origin Indication header Origin UDP port: 1109 Origin IPv4 address: **70.120.2.1** (70.120.2.1) Prefix: 2001:0:4136:e37e::

Send RS Cone Flag=1 (Cone NAT), every 4 seconds

If no reply, send Flag=0 (restricted NAT)

Receive RA with Origin header and prefix

Send RS to 2nd server to check for symmetric NAT

Compare 2nd
RA—Origin
port/address
from 2nd server

What Happens on the Wire—3

No. Time Source 82 139.258206 172.16.1.103 www.kame.net	Destination 151.1	Protocol Info 164.11.201 DNS Standard query AAAA	DNS lookup			
No. Time Source 83 139.530547 151.164.11.201 2001:200:0:8002:203:47ff:fea5	Destination 172.16.1.103 3 085	Protocol Info DNS Standard query response AAAA	Response			
request	03 (172.16.1.103), D	Destination Protocol Info 2001:200:0:8002:203:47ff:fea5:3085 ICMPv6 Echo Ost: 65.54.227.126 (65.54.227.126) Port: 3544 (3544)	ICMP to host via Teredo Server			
	Destination Protocol Info 149.405579 fe80::8000:5445:5245:444f 2001:0:4136:e37e:0:fbaa:b97e:fe4e IPv6 IPv6 no next header remet Protocol, Src: 65.54.227.126 (65.54.227.126), Dst: 172.16.1.103 (172.16.1.103)					
Teredo IPv6 over UDP tunneling Teredo Origin Indication header Origin UDP port: 50206 Origin IPv4 address: 66.117.47.227 (66.117.47.227)						
No. Time Source 98 149.405916 172.16.1.103	Destination 66.117.47.227	Protocol Info UDP Source port: 1109 Destination port: 50206	receives relay address-port			
No. Time Source 99 149.463719 66.117.47.227	Destination 172.16.1.103	Protocol Info UDP Source port: 50206 Destination port: 1109	Packets to			
No. Time Source 100 149.464100 172.16.1.103	Destination 66.117.47.227	Protocol Info UDP Source port: 1109 Destination port: 50206	/from IPv6 host and			
No. Time Source 101 149.789493 66.117.47.227	Destination 172.16.1.103	Protocol Info UDP Source port: 50206 Destination port: 1109	client traverse relay			

According to MSFT, if Teredo is the only IPv6 path, AAAA query should not be sent—being researched: http://msdn2.microsoft.com/en-us/library/aa965910.aspx

340_04_2008_c2 © 2008 Cisco Systems, Inc. All rights reserved. Cisco Public

What Happens on the Wire—3 (Cont.)

```
C:\>ping www.kame.net

Pinging www.kame.net [2001:200:0:8002:203:47ff:fea5:3085] with 32 bytes of data

Reply from 2001:200:0:8002:203:47ff:fea5:3085: time=829ms
Reply from 2001:200:0:8002:203:47ff:fea5:3085: time=453ms
Reply from 2001:200:0:8002:203:47ff:fea5:3085: time=288ms
Reply from 2001:200:0:8002:203:47ff:fea5:3085: time=288ms
Reply from 2001:200:0:8002:203:47ff:fea5:3085: time=438ms
```

Maintaining NAT Mapping

 Every 30 seconds (adjustable) clients send a single bubble packet to Teredo server to refresh NAT state

Bubble packet = Used to create and maintain NAT mapping and consists of an IPv6 header with no IPv6 payload (Payload 59—No next header)

No. Time Source Destination Protocol Info

35 46.399072 2001:0:4136:e37e:0:fbaa:b97e:fe4e ff02::1 IPv6 IPv6 no next header

Frame 35 (82 bytes on wire, 82 bytes captured)

Ethernet II, Src: Foxconn_2d:a1:4e (00:15:58:2d:a1:4e), Dst: 01:00:5e:00:00:fd (01:00:5e:00:00:fd)

Internet Protocol, Src: 172.16.1.103 (172.16.1.103), Dst: 224.0.0.253 (224.0.0.253)

User Datagram Protocol, Src Port: 1109 (1109), Dst Port: 3544 (3544)

Teredo IPv6 over UDP tunneling

Internet Protocol Version 6

Version: 6

Traffic class: 0x00 Flowlabel: 0x00000 Payload length: 0

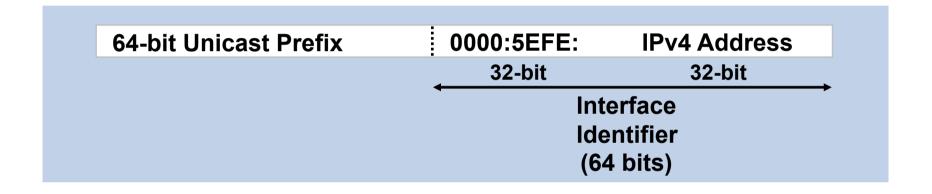
Next header: IPv6 no next header (0x3b)

Hop limit: 21

Source address: 2001:0:4136:e37e:0:fbaa:b97e:fe4e

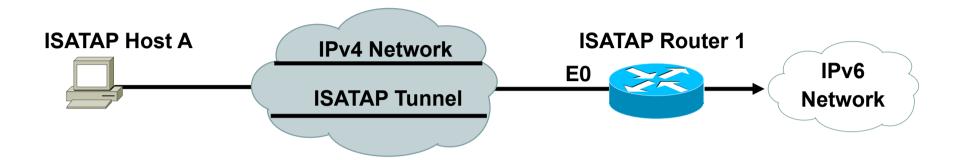
Destination address: ff02::1

Appendix: ISATAP Overview



Intrasite Automatic Tunnel Address Protocol

- RFC 4214
- This is for enterprise networks such as corporate and academic networks
- Scalable approach for incremental deployment
- ISATAP makes your IPv4 infratructure as transport (NBMA) network


Intrasite Automatic Tunnel Address Protocol

Use IANA's OUI 00-00-5E and Encode IPv4 Address as Part of EUI-64

- ISATAP is used to tunnel IPv4 within as administrative domain (a site) to create a virtual IPv6 network over a IPv4 network
- Supported in Windows XP Pro SP1 and others

Automatic Advertisement of ISATAP Prefix

ICMPv6 Type 133 (RS)

IPv4 Source: 206.123.20.100

IPv4 Destination: 206.123.31.200

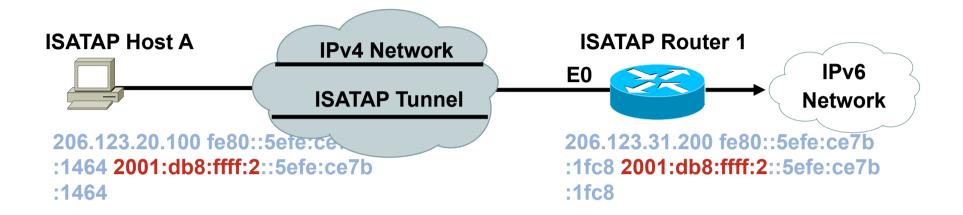
IPv6 Source: fe80::5efe:ce7b:1464

IPv6 Destination: fe80::5efe:ce7b:1fc8

Send me ISATAP Prefix

ICMPv6 Type 134 (RA)

IPv4 Source: 206.123.31.200


IPv4 Destination: 206.123.20.100

IPv6 Source: fe80::5efe:ce7b:1fc8

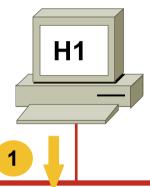
IPv6 Destination: fe80::5efe:ce7b:1464

ISATAP Prefix: 2001:db8:ffff :2::/64

Automatic Address Assignment of Host and Router

- ISATAP host A receives the ISATAP prefix 2001:db8:ffff:2::/64 from ISATAP Router 1
- When ISATAP host A wants to send IPv6 packets to 2001:db8:ffff:2::5efe:ce7b:1fc8, ISATAP host A encapsulates IPv6 packets in IPv4. The IPv4 packets of the IPv6 encapsulated packets use IPv4 source and destination address.

Appendix: Multicast

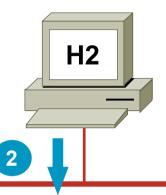

IPv4 and **IPv6** Multicast Comparison

Service	IPv4 Solution	IPv6 Solution
Addressing Range	32-bit, Class D	128-bit (112-bit Group)
Routing	Protocol Independent, All IGPs and MBGP	Protocol Independent, All IGPs and MBGP with v6 mcast SAFI
Forwarding	PIM-DM, PIM-SM, PIM-SSM, PIM-bidir, PIM-BSR	PIM-SM, PIM-SSM, PIM-bidir, PIM-BSR
Group Management	IGMPv1, v2, v3	MLDv1, v2
Domain Control	Boundary, Border	Scope Identifier
Interdomain Solutions	MSDP Across Independent PIM Domains	Single RP Within Globally Shared Domains

MLDv1: Joining a Group (REPORT)

FE80::209:5BFF:FE08:A674

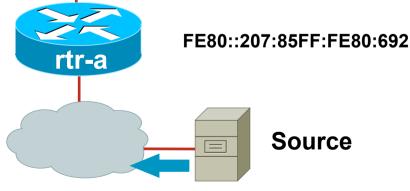
FE80::250:8BFF:FE55:78DE



Destination:

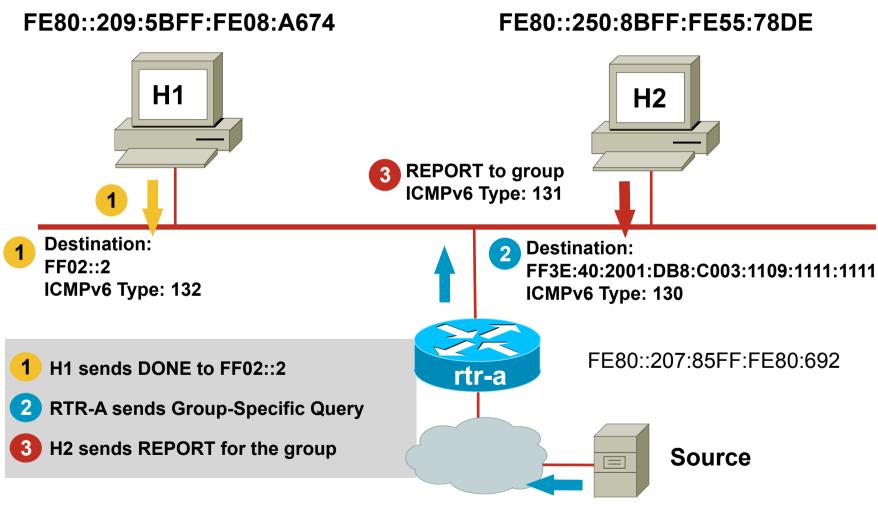
FF3E:40:2001:DB8:C003:1109:1111:1111

ICMPv6 Type: 131


- 1 H1 sends a REPORT for the group
- 2 H2 sends a REPORT for the group

Destination:

FF3E:40:2001:DB8:C003:1109:1111:1111


ICMPv6 Type: 131

Group:FF3E:40:2001:DB8:C003:1109:1111:1111

MLDv1: Host Management

(Group-Specific Query)

Group:FF3E:40:2001:DB8:C003:1109:1111:1111

Other MLD Operations

Leave/DONE

Last host leaves—sends DONE (Type 132)

Router will respond with group-specific query (Type 130)

Router will use the last member query response interval (Default=1 sec) for each query

Query is sent twice and if no reports occur then entry is removed (2 seconds)

General Query (Type 130)

Sent to learn of listeners on the attached link

Sets the multicast address field to zero

Sent every 125 seconds (configurable)

A Few Notes on Tunnels...

- PIM uses tunnels when RPs/sources are known
- Source registering (on first-hop router)
 - Uses virtual tunnel interface (appear in OIL for [S,G])
 - Created automatically on first-hop router when RP is known
 - Cisco IOS® keeps tunnel as long as RP is known
 - Unidirectional (transmit only) tunnels
 - PIM Register-Stop messages are sent directly from RP to registering router (not through tunnel!)

PIM Tunnels (DR-to-RP)

```
branch#show ipv6 pim tunnel
Tunnel1*
  Type : PIM Encap
                                                                        Corporate
        : 2001:DB8:C003:1116::2
                                                                        Network
  Source: 2001:DB8:C003:111E::2
                                                           Source
branch#show interface tunnel 1
                                                            RP
Tunnell is up, line protocol is up
  Hardware is Tunnel
  MTU 1514 bytes, BW 9 Kbit, DLY 500000 usec,
     reliability 255/255, txload 1/255, rxload 1/255
  Encapsulation TUNNEL, loopback not set
  Keepalive not set
  Tunnel source 2001:DB8:C003:111E::2 (Serial0/2),
 destination 2001:DB8:C003:1116::2
  Tunnel protocol/transport PIM/IPv6, key disabled,
 sequencing disabled
  Checksumming of packets disabled
  Tunnel is transmit only
  Last input never, output never, output hang never
  Last clearing of "show interface" counters never
... output truncated...
```

PIM Tunnels (RP)

 Source registering (on RP) → two virtual tunnels are created

One transmit only for registering sources locally connected to the RP

One receive only for decapsulation of incoming registers from remote designated routers

No one-to-one relationship between virtual tunnels on designated routers and RP!

PIM Tunnels (RP-for-Source)

```
RP-router#show ipv6 pim tunnel
Tunnel0*
  Type : PIM Encap
                                                                        Corporate
        : 2001:DB8:C003:1116::2
  RP
  Source: 2001:DB8:C003:1116::2
                                                                        Network
Tunnel1*
                                                           Source
  Type : PIM Decap
        : 2001:DB8:C003:1116::2
  Source: -
                                                            RP
RP-router#show interface tunnel 1
Tunnell is up, line protocol is up
  Hardware is Tunnel
 MTU 1514 bytes, BW 9 Kbit, DLY 500000 usec,
     reliability 255/255, txload 1/255, rxload 1/255
  Encapsulation TUNNEL, loopback not set
 Keepalive not set
  Tunnel source 2001:DB8:C003:1116::2
 (FastEthernet0/0), destination
 2001:DB8:C003:1116::2
  Tunnel protocol/transport PIM/IPv6, key disabled,
 sequencing disabled
  Checksumming of packets disabled
  Tunnel is receive only
... output truncated...
```

Tunneling v6 Multicast

v6 in v4

v6 in v4 most widely used

```
tunnel mode ipv6ip <---- IS-IS cannot traverse
```

v6 in v4 GRE (IS-IS can traverse)

```
tunnel mode gre ip
```

ISATAP/6to4 do not support IPv6 multicast

v6 in **v6**

• v6 in v6

```
tunnel mode ipv6
```

v6 in v6 GRE

tunnel mode gre ipv6

Source Specific Multicast (SSM)

 No configuration required other than enabling

ipv6 multicast-routing

- SSM group ranges are automatically defined
- Requires MLDv2 on host or SSM Mapping feature

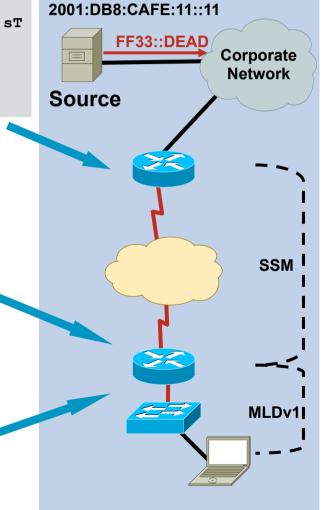
```
router#show ipv6 pim range-list
config SSM Exp: never Learnt from : ::
 FF33::/32 Up: 1d00h
 FF34::/32 Up: 1d00h
 FF35::/32 Up: 1d00h
 FF36::/32 Up: 1d00h
 FF37::/32 Up: 1d00h
 FF38::/32 Up: 1d00h
 FF39::/32 Up: 1d00h
 FF3A::/32 Up: 1d00h
 FF3B::/32 Up: 1d00h
 FF3C::/32 Up: 1d00h
 FF3D::/32 Up: 1d00h
 FF3E::/32 Up: 1d00h
 FF3F::/32 Up: 1d00h
```

SSM-Mapping

- Delay in SSM deployment (both IPv4 and IPv6) is based mainly on lack of IGMPv3 and MLDv2 availability on the endpoints
- SSM-Mapping allows for the deployment of SSM in the network infrastructure without requiring MLDv2 (for IPv6) on the endpoint
- SSM-Mapping enabled router will map MLDv1 reports to a source (which do not natively include the source like with MLDv2)

Range of groups can be statically defined or used with DNS Wildcards can be used to define range of groups

SSM-Mapping

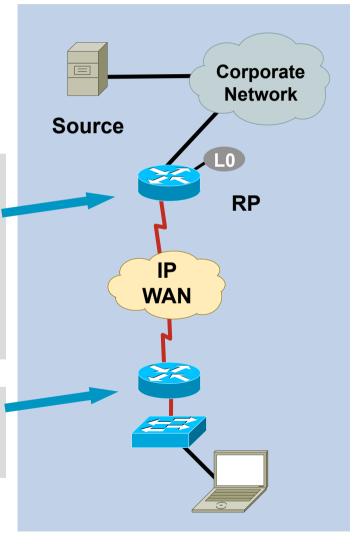

```
core-1#show ipv6 mroute | begin 2001:DB8:CAFE:11::11
(2001:DB8:CAFE:11::11, FF33::DEAD), 00:01:20/00:03:06, flags: sT
   Incoming interface: GigabitEthernet3/3
   RPF nbr: FE80::20E:39FF:FEAD:9B00
   Immediate Outgoing interface list:
        GigabitEthernet5/1, Forward, 00:01:20/00:03:06
```

Static Mapping:

```
ipv6 multicast-routing
!
ipv6 mld ssm-map enable
ipv6 mld ssm-map static MAP 2001:DB8:CAFE:11::11
no ipv6 mld ssm-map query dns
!
ipv6 access-list MAP
  permit ipv6 any host FF33::DEAD
```

DNS Mapping (the default):

```
ipv6 multicast-routing
!
ipv6 mld ssm-map enable
!
ip domain multicast ssm-map.cisco.com
ip name-server 10.1.1.1
```



IPv6 Multicast Static RP

 Easier than before as PIM is auto-enabled on every interface

```
ipv6 multicast-routing
!
interface Loopback0
  description IPV6 IPmc RP
  no ip address
  ipv6 address 2001:DB8:C003:110A::1/64
!
ipv6 pim rp-address 2001:DB8:C003:110A::1/64
```

```
ipv6 multicast-routing
!
ipv6 pim rp-address 2001:DB8:C003:110A::1/64
```


IPv6 Multicast PIM BSR: Configuration

```
wan-top#sh run | incl ipv6 pim bsr
ipv6 pim bsr candidate-bsr 2001:DB8:C003:1116::2
ipv6 pim bsr candidate-rp 2001:DB8:C003:1116::2
                             RP-2001:DB8:C003:1116::2
               Corporate
                                            IP
                Network
                                           WAN
 Source
                             RP-2001:DB8:C003:110A::1
wan-bottom#sh run | incl ipv6 pim bsr
ipv6 pim bsr candidate-bsr 2001:DB8:C003:110A::1
ipv6 pim bsr candidate-rp 2001:DB8:C003:110A::1
```

Bidirectional PIM (Bidir)

- The same many-to-many model as before
- Configure Bidir RP and range via the usual ip pim rp-address syntax with the optional bidir keyword

```
!
ipv6 pim rp-address 2001:DB8:C003:110A::1 bidir
!
#show ipv6 pim range | include BD
Static BD RP: 2001:DB8:C003:110A::1 Exp: never Learnt from : ::
```

Embedded-RP Addressing Overview

- RFC 3956
- Relies on a subset of RFC3306—IPv6 unicastprefix-based multicast group addresses with special encoding rules:

Group address carries the RP address for the group!

8 4 4 4 8 64 32

FF | Flags | Scope | Rsvd | RPaddr | Plen | Network Prefix | Group ID

New Address format defined:

Flags = 0RPT, R = 1, P = 1, T = 1=> RP address embedded (0111 = 7)

Example Group: FF7E:0140:2001:0DB8:C003:111D:0000:1112

Embedded RP: 2001:0DB8:C003:111D::1

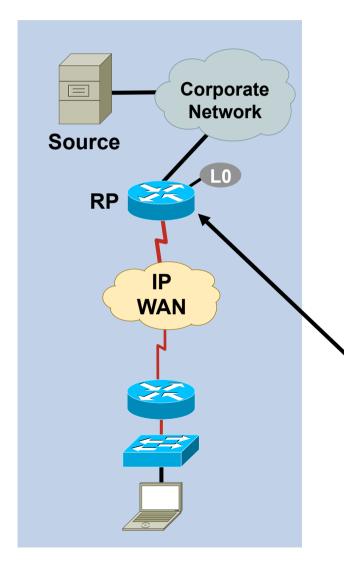
Embedded-RP

PIM-SM protocol operations with embedded-RP:

Intradomain transition into embedded-RP is easy:

Non-supporting routers simply need to be configured statically or via BSR for the embedded-RPs!

Embedded-RP is just a method to learn ONE RP address for a multicast group:

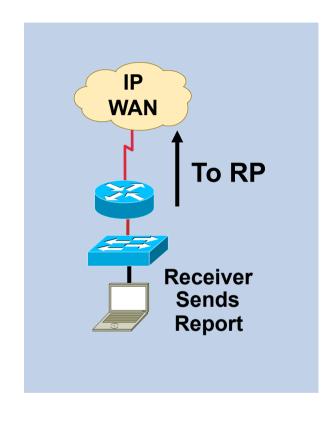

It can not replace RP-redundancy as possible with BSR or MSDP/Anycast-RP

Embedded-RP does not (yet) support Bidir-PIM

Simply extending the mapping function to define Bidir-PIM RPs is not sufficient:

In Bidir-PIM routers carry per-RP state (DF per interface) prior to any data packet arriving; this would need to be changed in Bidir -PIM if Embedded-RP was to be supported

Embedded-RP Configuration Example


- RP to be used as an Embedded-RP needs to be configured with address /group range
- All other non-RP routers require no special configuration

```
ipv6 pim rp-address 2001:DB8:C003:111D::1 ERP
!
ipv6 access-list ERP
  permit ipv6 any FF7E:140:2001:DB8:C003:111D::/96
```

Embedded RP—Does It Work?

```
branch#show ipv6 mroute active

Active IPv6 Multicast Sources - sending >= 4 kbps
Group: FF7E:140:2001:DB8:C003:111D:0:1112
    Source: 2001:DB8:C003:1109::2
    Rate: 21 pps/122 kbps(1sec), 124 kbps(last 100 sec)
```



```
branch#show ipv6 pim range | include Embedded

Embedded SM RP: 2001:DB8:C003:111D::1 Exp: never Learnt from : ::
    FF7E:140:2001:DB8:C003:111D::/96 Up: 00:00:24
```

Multicast Applications

- Microsoft Windows Media Server/Player (9 -11)
 http://www.microsoft.com/windows/windowsmedia/default.aspx
- VideoLAN www.videolan.org
- DVTS (Digital Video Transport System)
 http://www.sfc.wide.ad.jp/DVTS/http://www.dvts.jp/en/dvts.html
- Internet radio stations over IPv6
 http://www.ipv6.ecs.soton.ac.uk/virginradio/

Supported on iTunes 4.5, Windows Media Player, XMMS 1.2.8, etc...

Many more applications...Google is your friend :-)

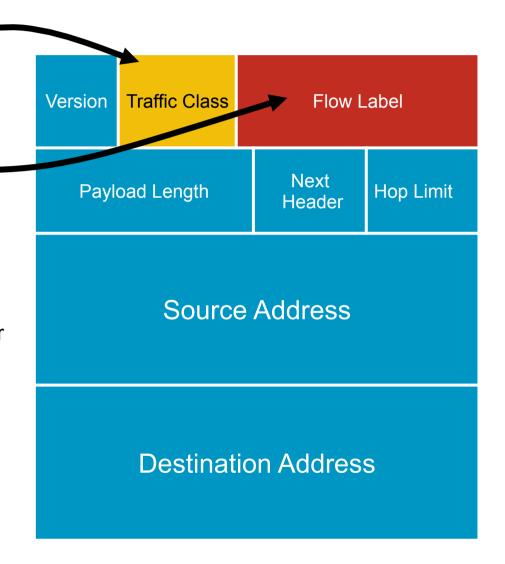
Appendix: QoS

IPv6 QoS: Header Fields

IPv6 traffic class

Exactly the same as TOS field in IPv4

IPv6 Flow Label (RFC 3697)


A new 20-bit field in the IPv6 basic header which:

Labels packets belonging to particular flows

Can be used for special sender requests

Per RFC, Flow Label must not be modified by intermediate routers

 Keep an eye out for work being doing to leverage the flow label

Simple QoS Example: IPv4 and IPv6

```
class-map match-any BRANCH-BULK-DATA
match access-group name BULK-DATA-IPV6
match access-group name BULK-DATA
class-map match-all BULK-DATA
match dscp af11
policy-map RBR-WAN-EDGE
 class BULK-DATA
 bandwidth percent 4
 random-detect
policy-map RBR-LAN-EDGE-IN
 class BRANCH-BULK-DATA
 set dscp af11
ip access-list extended BULK-DATA
permit tcp any any eq ftp
permit tcp any any eq ftp-data
ipv6 access-list BULK-DATA-IPV6
permit tcp any any eq ftp
permit tcp any any eq ftp-data
```

ACL Match To Set DSCP

✓ (If Packets Are Not Already Marked)

service-policy input RBR-LAN-EDGE-IN

service-policy output RBR-WAN-EDGE

ACLs to Match for Both IPv4 and IPv6 Packets

Configuring Cisco IOS NAT-PT


```
interface FastEthernet0/0
   ipv6 address 2001:DB8:C003:1::1/64
  ipv6 cef
  ipv6 nat
interface FastEthernet0/1
   ip address 192.168.1.1 255.255.255.0
  ipv6 nat prefix 2010::/96
  ipv6 nat
ipv6 nat v4v6 source 192.168.1.100 2010::100
ipv6 nat v6v4 source route-map MAP1 pool V4POOL
ipv6 nat v6v4 pool V4POOL 192.168.2.1
192.168.2.10 prefix-length 24
route-map MAP1 permit 10
match interface FastEthernet0/1
```